DÜSTERLOH Fluidtechnik *High-Precision Hydraulic Motors*

Radial Piston Motors with fixed displacement RMHP 90 - RMHP 110 $V_a = 88,4 \text{ cm}^3/\text{U} - 109,5 \text{ cm}^3/\text{U}$

Axial Piston Motors

with fixed desplacement AEHP 40 $V_a = 43,7 \text{ cm}^3/\text{U}$

Constant of the second second

Catalogue

HM1-018 EN Edition 2022.06 / 02

Product overview
Ordering information
Functional description RMHP 90 - RMHP 1105
Functional description AEHP 406
Technical data RMHP 907
Torque, efficiency and strength of the shaft chracteristics $\underline{8}$
Idling and leakage characteristics9
Service life of the bearings
Technical data RMHP 110
Torque, efficiency and strength of the shaft chracteristics
Idling and leakage characteristics <u>13</u>
Service life of the bearings
Technical data AEHP 40
Torque, efficiency and strength of the shaft chracteristics
Idling and leakage characteristics <u>17</u>
Service life of the radial bearing (facing control unit)
Service life of the axial and radial bearing (facing output shaft) 18
Additional details for the measuring shaft M and the flange dimensions F3 <u>19</u>
Calculation sheet

Special characteristics of the high precision hydraulic motors

Duesterloh high precision hydraulic motors generate an extreme low cyclic irregularity. The RMHP-motors have a cyclic irregularity of just 0,28 % and the AEHP of 0,73 %. In combination with a highly precise control of the oil flow to the pistons, the motors generate a high speed constancy, specially by driving low numbers of rotations.

Characteristics of the high precision Duesterloh hydaulic motors

- long service due to mature design
- · shaft end able to support large radial and axial forces
- small number of components in drive
- extreme low moment of inertia
- by default with measuring shaft
- translationally operating control unit with play adjustment control
- suitable for use with liquids with low combustion properties
- maintenance free
- quiet running

- · wide speed range
- · 100 % torque throughout the entire speed range
- immediately reversible
- high starting torgue
- · no counterpressure required for motor operation
- · can be used as pump if feed is available
- suitable for several applications as a control unit
- feed and discharge control possible
- total efficiency of up to 93 %
- direct valve mounting available as a standard option

Motor	Displace-	Torq	ue	Speed		Maximum			Out	put
	ment				pressure	pressure	pressure			
	V _g [cm³/U]	T _{spec} [Nm/bar]	T _{max} [Nm]	n _{min*} [min ⁻¹]	n _{max} [min ⁻¹]	p _{cont.} [bar]	p _{max} [bar]	p _{peak} [bar]	P _{cont.} [kW]	P _{intermit.} [kW]
RMHP 90	88,4	1,24	252	1	900	140	210	250	8,5	10
RMHP 110	109,5	1,55	310	1	750	140	210	250	8,5	10
AEHP 40	43,7	0,63	155	1	2000	210	250	315	18,0	21

Calculation - Performance limits:

	With known pressure difference ∆p:	With known number of rotations n:
RMHP 90:	$n \leq \frac{8,5kW \times 9549,3}{\Delta p \times 1,24Nm/bar} = \frac{65459}{\Delta p} [1/min]$	$\Delta p \le \frac{8,5kW \times 9549,3}{n \times 1,24Nm/bar} = \frac{65459}{n}$ [bar]
RMHP 110:	$n \leq \frac{8,5kW \times 9549,3}{\Delta p \times 1,55Nm/bar} = \frac{52367}{\Delta p} [1/min]$	$\Delta p \le \frac{8,5 \text{kW} \times 9549,3}{n \times 1,55 \text{Nm/bar}} = \frac{52367}{n}$ [bar]
AEHP 40:	$n \leq \frac{18 \text{kW} \times 9549,3}{\Delta p \times 0,63 \text{Nm/bar}} = \frac{272837}{\Delta p} [1/\text{min}]$	$\Delta p \leq \frac{18 \text{kW} \times 9549,3}{n \times 0,63 \text{Nm/bar}} = \frac{272837}{n} \text{ [bar]}$

inlet pressure p, minus outlet pressure p2 Δр if limited to $\mathsf{P}_{\text{cont.}}$ P_{cont.} if limited to $P_{intermit.}^{cont.}$ operating for a maximum duration of 10 % in every hour $\boldsymbol{p}_{\text{max}}$ highest pressure at which the components will remain functional **P**_{peak} continuous output (at a return pressure of 10 bar); if this output is constantly exceeded, cont the drive mus be flushed P_{intermit} output with which the motor can be run intermittently (for an operating time of 10 % in every hour).

High-Precision Hydraulic Motor RMHP 90 - RMHP 110 ; AEHP 40 Ordering information Ordering information

Catalogue Edition Page

HM1 - 018 EN 2022.06 / 02 4

High-Precision Hydraulic	Motor					T		
Motortyp with play self-adjustment Motortyp / Displacement Radial-piston motor 88 cm³/U	Denotation = RMHP_90						Additional information Flush connection	Denotation = S99 (AEHP = standard)
Radial-piston motor 109 cm ³ /U Axial-piston motor 44 cm ³ /U Drive shaft	= RMHP 110 = AEHP 40 Denotation]					Flange dimensions Attachment	Denotation
Cylindrical Keyway DIN 6885 T1	= Z		1				$S = \emptyset 80; K = \emptyset 100$ $S = \emptyset 120; K = \emptyset 140$	
Connections Flange connection, radial Duesterloh standard (for mounting the valve)	Denotation = A1				<u> </u>		Flange connection $S = \emptyset 160; K = \emptyset 200$ ISO 3019/2	= F
Threaded connection, radial G ¹ / ₂ DIN ISO 228-1 Threaded connection, axial	= A = B5			-			(S = diameter of the c) (K = circle diameter for the c)	
G ³ / ₄ DIN ISO 228-1]					Second shaft end	Denotation
Sealing material NBR seals, suitable for HLP mineral oils according to DIN 51524 part 2 FPM seals, suitable for ester							cylindrical measuring shaft ø10 _{h6} for sensor (incre- mental speed sensor etc.)	= M (Not available for B5
of phosphoric acid (HFD).	= V						without second shaft end	= *

* No information given in the type key number.

1. General properties and features

Hydrostatic radial piston motor

Purpose:

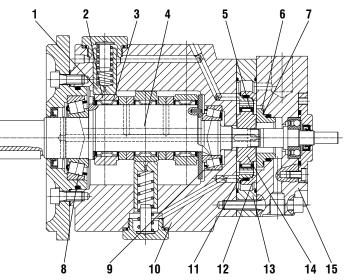
Transformation of hydraulic power to drive power. High efficiency, also suitable for very low speeds, low moment of inertia, rapidly reversible, four-quadrant

operation possible, very suitable for applications as a control, quiet operation.

2. Structure and function

2.1 Drive unit

Design: Internal piston support


Method of functioning: Twenty-one radial pistons (1) load the crankshaft (4) via a heptagon ring (2) with a needle bearing cage (3).

Drive details

Crankshaft bearing: Prestressed, amply dimensioned taper roller bearing **(8/9)** in X-arrangement.

High guiding accuracy, therefore smooth

running, high axial and radial load capacity

(e.g. a flying arrangement of a pinion on the drive shaft). Load transmission piston (1) - crank shaft (4): Through heptagon ring (2) with needle bearing (3).

Advantage: Low frictional losses, very long service life, relatively insensitive to dirt, high starting torque, high continuous torque, no stick-slip effect at low speeds, only minor leakage (necessary for the lubrication and cooling of the drive), high efficiency.

2.2 Control

Design:

Planar translational distribution valve with play adjustment.

Purpose:

Distribution of the volume feed to the twenty-one cylinders, collection of the return volume flow.

Methode of functioning:

Control rings (11/12) with the external ring (13) and with the eccentric (14) form an external and an internal ring space. By moving the control rings (11/12) between the motor housing (10) and the end cover (15) by means of the eccentric (4) which is fixed to the crankshaft (14), the internal and the external ring spaces are connected to the cylinders in turn. The ring spaces themselves are connected to the outside through pressure connections to the motor.

Control details

Roller bearing (5) between the control rings (11/12) and the eccentric (14). The control rings (11/12) mainly move translationally, nevertheless rotationally movement is possible (two-degree-of-freedom-system) - this means small frictional losses at the control rings (11/12) and a cleaning effect in the sealing gap, approximately equal relative speeds of the sealing faces. Sinusoidal opening function for the control openings - this means smooth running even at low speeds and quiet running at high speeds, large volume flow in the control ring (11).

Adjustment of the play on the control rings (11/12) and the flats on the eccentric (14):

Through hydrostatic pressure, the control rings (11/12) are forced against the flats. In case of zero and low pressure situations, the contect between rings and flats is guranteed throughout a spring washer, hydrostatic re-adjustment of the eccentric flats to each other, supported by a pressure thrust piece (6) and by a helical spring (7).

Very low leakage and small frictional losses, automatic compensation of pressure and temperature influences (temperature shocks among others), relatively insensitive to dirt.

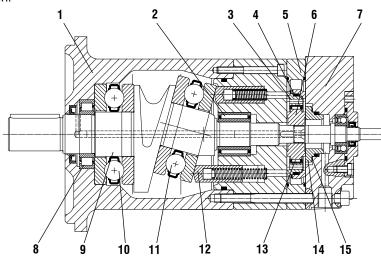
1. General properties and features

Hydrostatic axial piston motor

Purpose:

Transformation of hydraulic power to drive power. High efficiency, also suitable for very low speeds, low moment of inertia, rapidly reversible, high totals printout load capacity, four-quadrant operation possible, very suitable for applications as a control, quiet operation.

2. Structure and function


2.1 Drive unit

Design:

Wobble plate Method of functioning: Thirteen axial pistons (12) load the wobble spindle (9) via deep groove ball thrust bearing (11).

Drive details

Balanced wobble spindle (9), bedded in a deep groove ball thrust bearing (10) and a cylinder roller bearing (8) facing drive side. The wobble spindle (9) facing the control unit is bedded in a needle bearing (2). High radial load capacity (e.g. a flying arrangement of a pinion

on the drive shaft). The generation of the torque results from the power transmission through the operating medium to the pistons (12). By means of deep groove ball thrust bearings (10/11) in combination with the wobble plate the pistons affect the wobble spindle (9).

Advantage: Low frictional losses, very long service life, relatively insensitive to dirt, high starting torque, high continuous torque, no stick-slip effect at low speeds, only minor leakage (necessary for the lubrication and cooling of the drive), high efficiency.

2.2 Control

Design:

Planar translational distribution valve with play adjustment.

Purpose:

Distribution of the volume flow to the thirteen cylinders, collection of the return volume flow.

Methode of functioning:

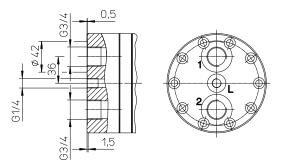
Control rings (3/4) with the external ring (5) and with the eccentric (6) form an external and an internal ring space. By moving the control rings (3/4) between the motor housing (1) and the end cover (7) by means of the eccentric (6) which is fixed to the wobble spindle (9), the internal and the external ring spaces are connected to the cylinders in turn. The ring spaces themselves are connected to the outside through pressure connections to the motor.

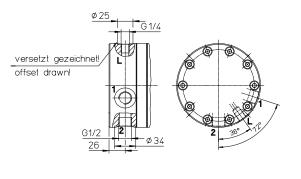
Control details

Roller bearing (13) between the control rings (3/4) and the eccentric (6). The control rings (3/4) mainly move translationally, nevertheless rotational movement is possible (two-degree-of-freedom-system) - this means small frictional losses at the control rings (3/4) and a cleaning effect in the sealing gap, approximately identical relative speeds of the sealing faces. Sinusoidal opening function for the control openings - this means smooth running even at low speeds and quiet running at high speeds, large volume flow in the control ring (13).

Adjustment of the play on the control rings (3/4) and the flats on the eccentric (6):

Through hydrostatic pressure, the control rings (3/4) are forced against the flats. In case of zero and low pressure situations, the contact between rings and flats is guaranteed throughout a spring washer, hydrostatic readjustment of the eccentric flats to each other, supported by a pressure thrust piece (14) and by a helical spring (15). Very low leakage and small frictional losses, automatic compensation of pressure and temperature influences (temperature shocks among others), relatively insensitive to dirt.




RMHP 90 ZA1MF

Alternative end cover: B5

Alternative end cover: A

Hydraulic characteristic v	alues RMHF	90
Geometr. displacement:	88,4	[cm ³ /U]
Theor. spec. torque:	1,4	[Nm/bar]
Average spec. torque:	1,24	[Nm/bar]
Peak pressure:*	250	[bar]
Max. operating pressure:**	210	[bar]
Continuous pressure:	140	[bar]
Max. operating torque:	252	[Nm]
Continuous torque:	173	[Nm]
Drain line pressure:	max. 1	[bar]
	(discharge pressurele	ess to tank)
Hydraulic fluid temperature range:	243 - 363	[K]
	minus 30 - +90	[°C]
Viscosity range:	20 - 150	[mm²/s]

(max. 1000 mm²/s at start)

Pressure fluids:

Mineralöl H-LP conformity with DIN 51424 part 2

Bio-degradable fluids available on request.

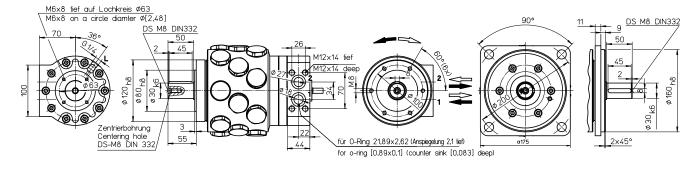
* Definition acc. to DIN 24 312: Peak pressure = exceeding the maximum operating pressure fo a short time at which the motor remains able to function.

** If the sum of inlet pressure and outlet pressure is higher than the peak pressure, please consult the manufacturer.

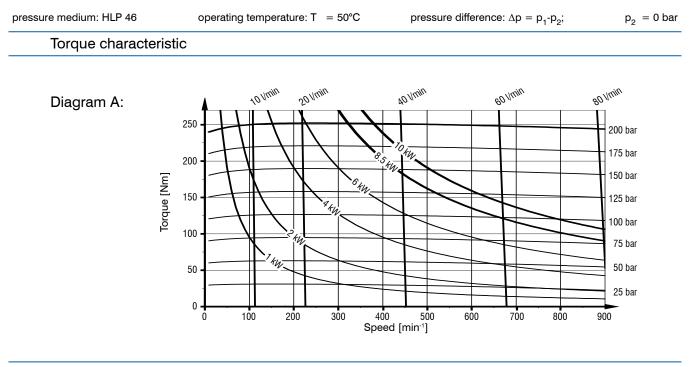
HFC		Definition CETOP RP 77 H
HFD	FPM-/FKM-seals are required	ISO/DIS 6071

Filtering:

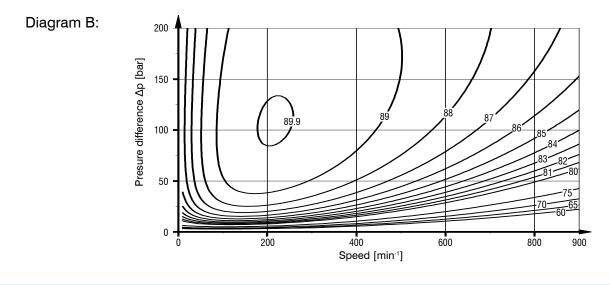
Max. permissible degree of contamination of the fluid according NAS 1638 Klasse 9.


We recommend filters with a minimum retention rate $\beta_{10} \ge 100$ For a long service life we recommend filtering acc. to NAS 1638 class 8, and filters with a minimum retention rate $\beta_5 \ge 100$.

Characteristic values according to VDI 3278


Weight:		25,2	[kg]
Monting positio	n:		as required
Operating spee	d range:	1 - 900	[min ⁻¹]
Moment of inert	ia:	0,00032	[kgm²]
Continuous pov	ver:	8,5	[kW]
Intermittent pow	/er:	10,0	[kW]
Direction of rota	tion, if viewed at th	ne shaft end	
clockwise:	flow from connec	tion 2 to connectio	on 1
anti-clockwise:	flow from connec	tion 1 to connectio	on 2

Standard design: RMHP 90 ZA1M


Flange design: F

Hydraulic-mechanical efficiendy in percentage

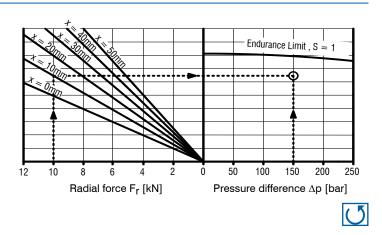
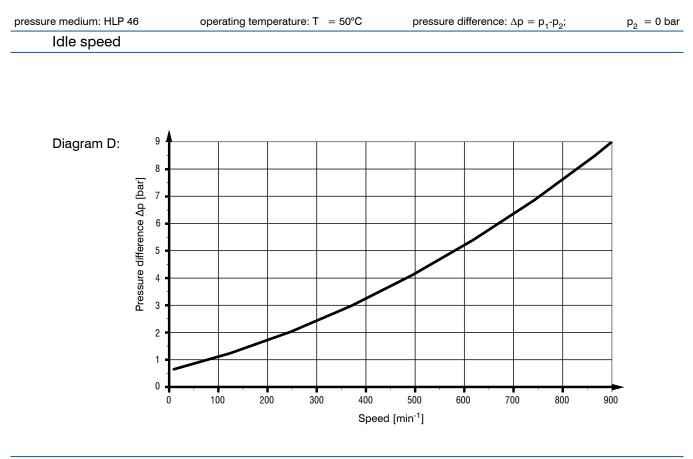
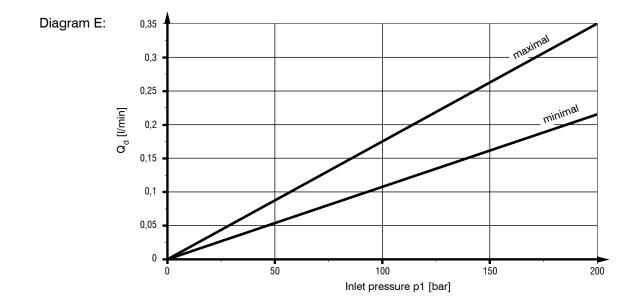
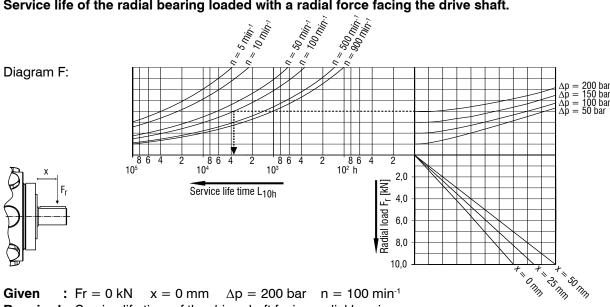

Strength of the shaft

Diagram C:

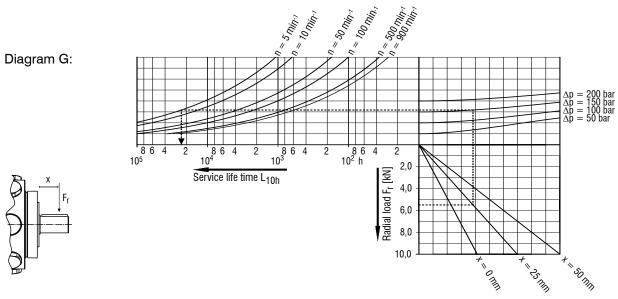

Example:

Given: Fr = 10 kN; x = 10 mm; Δp = 150 bar **Required:** Shaft strength


Draw a vertical line from Fr = 10 kN to distance x = 10 mm and a straight horizontal line to the right. If the intersection of the horizontal with the vertical line of $\Delta p = 150$ bar is below the curve S = 1, the shaft has sufficient fatigue strength. Allowable axial forces will be provided on request.



External leakage through flow



Service life of the radial bearing loaded with a radial force facing the drive shaft.

: Fr = 0 kNx = 0 mm $\Delta p = 200 \text{ bar} \text{ n} = 100 \text{ min}^{-1}$ Required: Service life time of the drive shaft facing radial bearing. Diagram F: Form a rorizontal line from the $\Delta p = 200$ bar curve to the n = 100 min⁻¹ curve. From this fol-

lows a service life time value of $L_{10h} = 3665,5 h$.

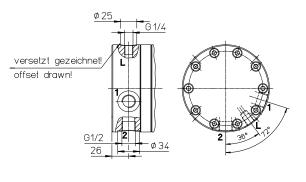
Service life of the radial bearing loaded with a radial force facing the control unit.

Given : Fr = 5,5 kNx = 25 mm $\Delta p = 150 \text{ bar}$ $n = 5 min^{-1}$ Required: Service life time of the drive shaft facing radial bearing.

Diagram G:

Form a horizontal line from Fr = 5.5 kN to x = 25 mm. From the intersection form a vertical line to the pressure curve $\Delta p = 150$ bar. Afterwards, draw a line from the pressure curve to the speed curve $n = 5 \text{ min}^{-1}$.


The intersection shows the service life time $L_{10h} = 23351$ h.


RMHP 110 ZA1MF

Alternative end cover: B5

Alternative end cover: A

Hydraulic characteristic values RMHP 110

Geometr. displacement:	109,5	[cm ³ /U]
Theor. spec. torque:	1,74	[Nm/bar]
Average spec. torque:	1,55	[Nm/bar]
Peak pressure:*	250	[bar]
Max. operating pressure:**	210	[bar]
Continuous pressure:	140	[bar]
Max. operating torque:	310	[Nm]
Continuous torque:	217	[Nm]
Drain line pressure:	max. 1	[bar]
	(discharge pressureles	s to tank)
Hydraulic fluid temperautre range:	243 - 363	[K]
, , , , , , , , , , , , , , , , , , , ,	minus 30 - +90	່ເວັ່າ

 Hydraulic fuild temperautre range:
 243 - 363
 [K]

 minus 30 - +90
 [°C]

 Viscosity range:
 20 - 150
 [mm²/s]

 (max. 1000 mm²/s at start)
 [mm²/s]

Pressure fluids:

Mineralöl H-LP conformity with DIN 51424 part 2

Bio-degradable fluids available on request.

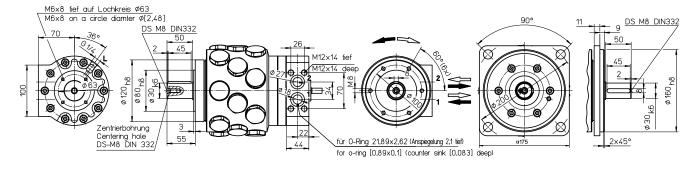
* Definition acc. to DIN 24 312: Peak pressure = exeeding the maximum operating pressure fo a short time at which the motor remains able to function.

** If the sum of inlet pressure and outlet pressure is higher than the peak pressure, please consult the manufacturer.

HFC		Definition CETOP RP 77 H
HFD	FPM-/FKM-seals are required	ISO/DIS 6071

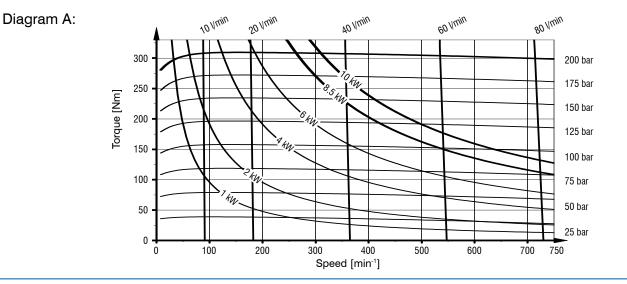
Filtering:

Max. permissible degree of contamination of the fluid according NAS 1638 Klasse 9.

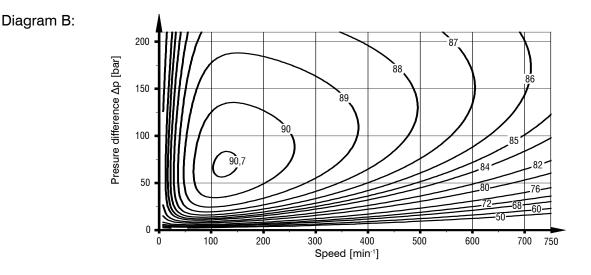

We recommend filters with a minimum retention rate $\beta_{10} \geq 100$ For a long service life we recommend filtering acc. to NAS 1638 class 8, and filters with a minimum retention rate $\beta_{5}~\geq 100$.

Characteristic values according to VDI 3278

		<u> </u>	
Weight:		25,2	[kg]
Monting positio	n:		as required
Operating spee	d range:	1 - 750	[min ⁻¹]
Moment of iner	tia:	0,00034	[kgm²]
Continuous pov	wer:	8,5	[kW]
Intermittent pov	ver:	10,0	[kW]
Direction of rota	ation, if viewed at th	e shaft end	
clockwise:	flow from connect	ion 2 to connectio	on 1
anti-clockwise:	flow from connect	ion 1 to connectio	on 2


Standard design: RMHP 110 ZA1M

Flange design: F



Torque characteristic	

Hydraulic-mechanical efficiendy in percentage

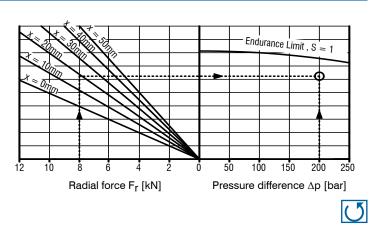
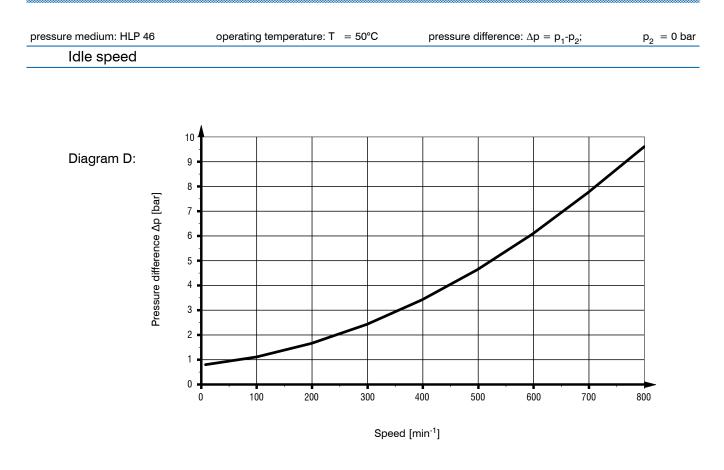
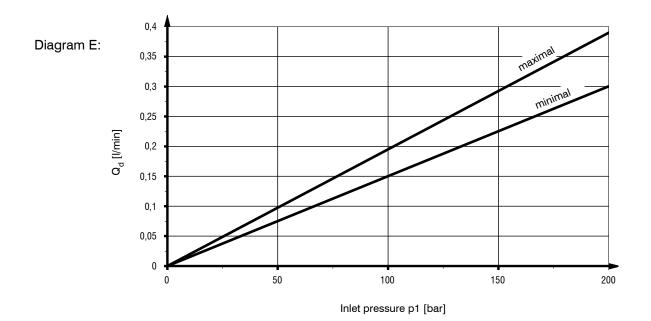
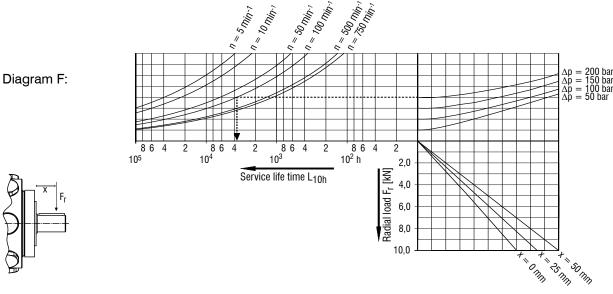

Strength of the shaft

Diagram C:

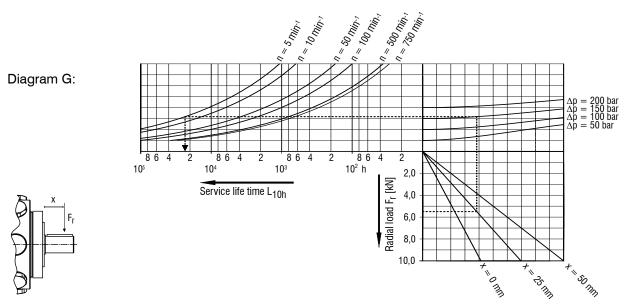

Example:

Given: Fr = 8 kN; x = 20 mm; Δp = 200 bar **Required:** Shaft strength


Draw a vertical line from Fr = 8 kN to distance x = 10 mm and a straight horizontal line to the right. If the intersection of the horizontal with the vertical line of $\Delta p = 200$ bar is below the curve S = 1, the shaft has sufficient fatigue strength. Allowable axial forces will be provided on request.



External leakage through flow



Service life of the radial bearing loaded with a radial force facing the drive shaft.

Given : Fr = 0 kN x = 0 mm Δp = 200 bar n = 100 min⁻¹ **Required**: Service life time of the drive shaft facing radial bearing. Diagram F: Form a rorizontal line from the Δp = 200 bar curve to the n = 100 min⁻¹ curve. From this follows a service life time value of L_{10h} = 3665,5 h.

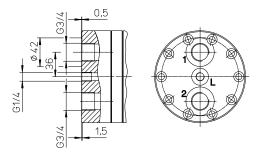
Service life of the radial bearing loaded with a radial force facing the control unit.

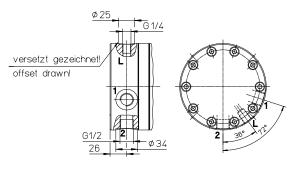
Given : Fr = 5.5 kN x = 25 mm $\Delta p = 150 \text{ bar}$ $n = 5 \text{ min}^{-1}$ **Required :** Service life time of the drive shaft facing radial bearing.

Diagram G:

Form a horizontal line from Fr = 5,5 kN to x = 25 mm. From the intersection form a vertical line to the pressure curve $\Delta p = 150$ bar. Afterwards, draw a line from the pressure curve to the speed curve n = 5 min⁻¹.

The intersection shows the service life time $L_{10h} = 23351$ h.


U


AEHP 40 ZA1

Alternative end cover: B5

Alternative end cover: A

Hydraulic characteristic values AEHP 40

Geometr. displacement:	43,7	[cm ³ /U]		
Theor. spec. torque:	0,7	[Nm/bar]		
Average spec. torque:	0,63	[Nm/bar]		
Peak pressure:*	315	[bar]		
Max. operating pressure:**	250	[bar]		
Continuous pressure:	210	[bar]		
Max. operating torque:	159	[Nm]		
Continuous torque:	131,5	[Nm]		
Drain line pressure:	max. 1	[bar]		
	(discharge pressureless to tank)			
Hydraulic fluid temperautre range:	243 - 363	[K]		

 Hydraulic fluid temperautre range:
 243 - 363
 [K]

 minus 30 - +90
 [°C]

 Viscosity range:
 20 - 150
 [mm²/s]

 (max. 1000 mm²/s at start)
 [mm²/s]

Pressure fluids:

Mineralöl H-LP conformity with DIN 51424 part 2

Bio-degradable fluids available on request.

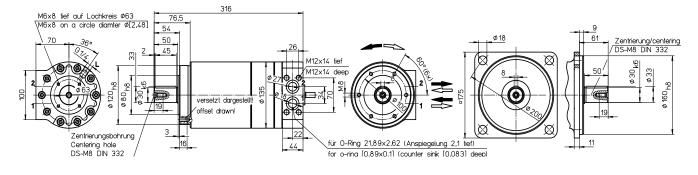
* Definition acc. to DIN 24 312: Peak pressure = exceeding the maximum operating pressure fo a short time at which the motor remains able to function.

** If the sum of inlet pressure and outlet pressure is higher than the peak pressure, please consult the manufacturer.

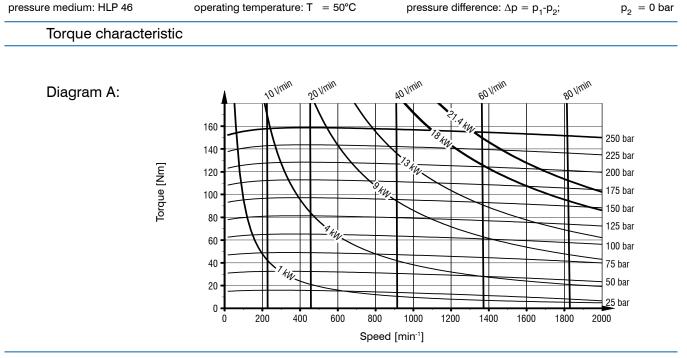
HFC	Reduce HFC pressure to 70% Check the bearing servise life	Definition CETOP RP 77 H			
HFD	FPM-/FKM-seals are required	ISO/DIS 6071			

Filtering:

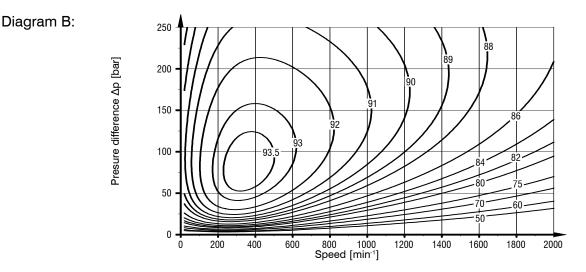
Max. permissible degree of contamination of the fluid according NAS 1638 Klasse 9.


We recommend filters with a minimum retention rate $\beta_{10} \geq 100$ For a long service life we recommend filtering acc. to NAS 1638 class 8, and filters with a minimum retention rate $\beta_{5}~\geq 100$.

Characteristic values according to VDI 3278


		-		
Weight:		25,0	[kg]	
Monting position:			as required	
Operating speed range:		1 - 2000	[min ⁻¹]	
Moment of inertia:		0,0011	[kgm²]	
Continuous power:		18,0	[kW]	
Intermittent power:		21,0	[kW]	
Direction of rotation, if viewed at the shaft end				
clockwise: f	flow from connection 2 to connection 1			
anti-clockwise: f	lockwise: flow from connection 1 to connection 2			

Standard design: AEHP 40 ZA1M


Flange design: F

Hydraulic-mechanical efficiendy in percentage

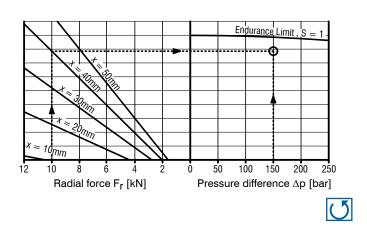
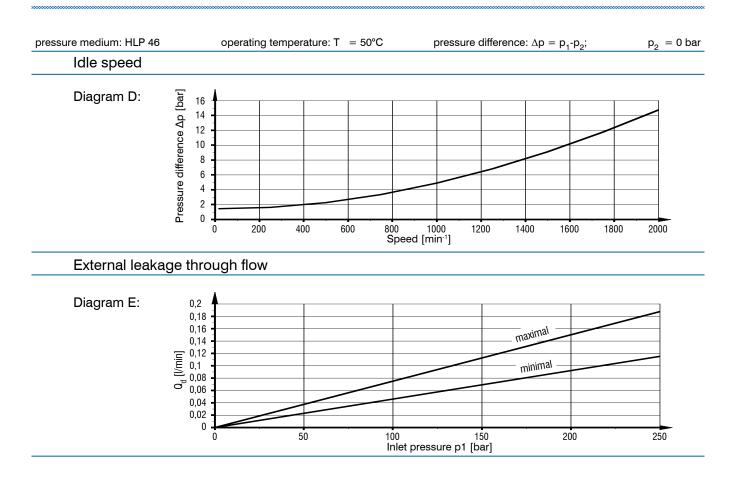

Strength of the shaft

Diagram C:


Example:

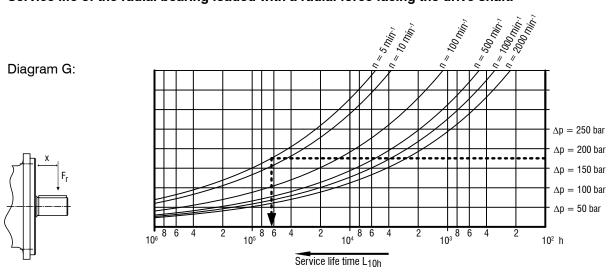
Given: Fr = 10 kN; x = 40 mm; $\Delta p = 150$ bar **Required:** Shaft strength Draw a vertical line from Fr = 10 kN to distance

x = 40 mm and a straight horizontal line to the right. If the intersection of the horizontal with the vertical line of $\Delta p = 150$ bar is below the curve S = 1, the shaft has sufficient fatigue strength. Allowable axial forces will be provided on request.

Service life of the radial bearing loaded with a radial force facing the control unit.

Given : Fr = 2,5 kN x = 20 mm $\Delta p = 50 \text{ bar}$ $n = 500 \text{ min}^{-1}$ **Required**: Service life time of the drive shaft facing radial bearing.

Diagram G:


Form a horizontal line from Fr = 2,5 kN to x = 20 mm. From the intersection form a vertical line to the pressure curve Δp = 50 bar. Afterwards, draw a line from the pressure curve to the speed curve n = 500 min⁻¹.

The intersection shows the service life time $L_{10h} = 1.686.674 \text{ h}$

U

U U

Service life of the radial bearing loaded with a radial force facing the drive shaft.

Given : Fr = 0 kN x = 0 mm $\Delta p = 175$ bar n = 5 min⁻¹ **Required**: Service life time of the drive shaft facing radial bearing. Diagram G:

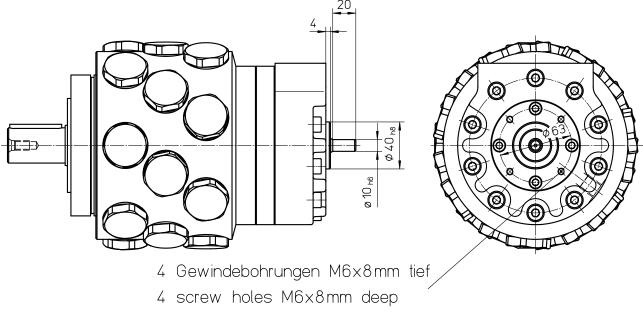
Form a rorizontal line from the $\Delta p = 175$ bar curve to the $n = 5 \text{ min}^{-1}$ curve. From this follows a service life time value of $L_{10h} = 71.068 \text{ h}$.

Service life of the radial bearing loaded with a radial force facing the control unit. n = 100 min' n= 500 min' n# $\Delta p = 250 \text{ bar}$ $\Delta p = 200 \text{ bar}$ $\Delta p = 150 \text{ bar}$ $\Delta p = 100 \text{ bar}$ Diagram H: $\Delta p = 50 \text{ bar}$. 8 10⁵ h 107 106 Radial load F_r [kN] 50 mm = 40 mm = 25 mm Service life time L10h = 0 mm

 $\label{eq:given} \begin{array}{ll} \mbox{Given} & : \ \mbox{Fr}=2 \ \mbox{kN} & x=50 \ \mbox{mm} & \Delta p=100 \ \mbox{bar} & n=2000 \ \mbox{min}^{-1} \\ \mbox{Required} : \ \mbox{Service life time of the drive shaft facing radial bearing.} \end{array}$

Diagram H:

Form a horizontal line from Fr = 2 kN to x = 50 mm. From the intersection form a vertical line to the pressure curve $\Delta p = 100$ bar. Afterwards, draw a line from the pressure curve to the speed curve n = 2000 min⁻¹. The intersection shows the service life time L_{10h} = 45.477 h.


Catalogue Edition Page

HM1 - 018 EN 2022.06 / 02 19

Cylindrical measuring shaft: M

Radial- and axial piston motors of the series RMHP 90, RMHP 110 and AEHP 40 with the addititonal denotation "M" are coupled to a cylindrical measuring shaft to determine the speed of the engine. The cylindrical measuring shaft is fixed to the crankshaft and is able to assign a torque of about 5 Nm. If a higher torque is required, please request separately. Informations about accessories like speed indicators, dynamos, impuls generators and power frequency generators please request also separately.

RMHP 90 ZA1M:

Flange connection: F3 (just RMHP)

Seven additional mounting boreholes M8 x 11 deep on a pitch circle Ø 140.

RMHP 90 ZA1MF3:

You know your product, we know our high-precision motors! Give us your conditions, we will calculate all important data for a suitable drive.

1.	Company* Street / P.O.Box Postal code / City Country			For attention of*						
				Department						
				Phone No* E-Mail*						
2.	Operating data: secondary drive									
2.1	Machine type:	-			pro	iect:				
2.2	Machine operating factor					J				
2.3	Installation position:	-	horizontal		_			vertical		
			drive shaft up	wards				drive shaft de	ownwards	
2.4	Forces on drive shaft:		pressure					tension		
			radial:			Ν				Ν
2.5	Nominal torque	T _N		Nm				min ⁻¹		
2.6	Continuous torque*	T _{cont} *			speed			min ⁻¹		
2.7	Maximum torque	_		Nm	-			min ⁻¹		
2.8	Minimum torque	T _{min}			-			min ⁻¹		
2.9	Maximum speed		=		•					
2.10	, Minimum speed									
	Minimum speed n_{min} =min^{-1} timet=minInformation about working cycle:minmin									
		, - , <u>-</u>								
2.12	Secondary drive with v	valve asser	nbly on the m	notor						
	Control drive with prop		-							
	Maximum power:			kW	cor	ntinuo	ous powe	er*: P* =		kW
	one-shift-operation		two-shift-							
	-		=	•			·			
	Remarks:									
3.	Operating data: primary	drive								
	Hydraulic fluid:									
	operating temperature:			Θ :	=		_°C			
	Delivery volume of pump			Q _P :	=		_l/min			
	opened circuit		🗌 closed cir							
	Feeding pressure			p _F :	=		_bar			
	System pressure				=		bar			
	Desired operating pressur	e at T _N		p _N -	~		bar			

* Requested fields, which are necessary for the first design.

(The more informations we get about the technical conditions and the applicationarea, the more specific will be our consulting and design for you.)

Notes

DUESTERLOH has been developing fluid technology products for more than 100 years.

The drives, controls and hydraulic power units from Hattingen are appreciated throughout the world for their complete reliability; including under extreme conditions. The owner-managed company's own development and construction department and the wide range of products cater for distinctive flexibility and customer-orientation.

Products

- Hydraulic radial piston motors
- Hydraulic axial piston motors
- Hydraulic high precision motors
- Pneumatic motors
- Pneumatic starters
- · Hydraulic and pneumatic controls
- Hydraulic power units

Designing controls and hydraulic power units specific to the customer is our company's major strength. Vast product diversity is also available for standardized products.

Industrial areas of application

- Machine tools
- Smelting and rolling mill equipment
- Foundry machines
- Testing machines
- Shipbuilding (diesel engines)
- Offshore technology
- Printing and paper technology
- Vehicle construction
- Manipulators
- Environmental technology
- Mining equipment
- Materials handling equipment

Düsterloh Fluidtechnik GmbH Im Vogelsang 105 D-45527 Hattingen

Tel.: +49 2324 709-0 Fax: +49 2324 709-110

e-mail: info@duesterloh.de Internet: www.duesterloh.de