

Table of Contents | Designing with igus®

Introduction		
Introduction Designing with igus®	page	1.3
igus® Terms Alphabetical Order	page	1.4
Calculation E-Chain®-Lengths and Camber	.page	1.5
Application-Examples E-ChainSystems®	.page	1.6
Applications		
Unsupported Short Travels	.page	1.8
Unsupported Noise-Optimized	.page	1.11
Load Diagrams Unsupported Straight FL_{G} Unsupported Sag FL_{B}	.page	1.12
Gliding Long Travels	.page	1.16
Application Vertical Hanging	.page	1.20
Application Vertical Hanging Zig-Zag	.page	1.21
Application Vertical Standing	.page	1.22
Application Side-Mounted	.page	1.24
Application Rotary Motion	.page	1.26
Filling and Strain Relief		
Filling Cable and Hose Packages	page	1.28
Strain Relief Elements Chainfix	page	1.32
Technical Data, Standards, Material Data		
Technical Environment Material igumid	page	1.34
Technical Environment ESD & ATEX	page	1.35
Technical Environment Clean Room and ESD	page	1.36
Technical Environment Dirty Environment	page	1.37
Material Material Data	page	1.38
Material Chemical Resistance and Colors	page	1.39
Certifying Standards and Certificates	page	1.40
ReadyChains®		
ReadvChains® Readv-Made E-ChainSvstems®	page	1.41

About igus® E-ChainSystems®

igus® E-ChainSystems® guide and protect moving cables and hoses on automated equipment. They can be used in a wide variety of applications and possess the following capabilities: ■ Use with various types of motion and travels ■ Guidance of sensitive bus and data cables, as well as FOC, using the same techniques as with electric, gas, air and liquid hose guidance ■ Long service life under very high loads and demanding requirements ■ Smooth operation in a full range of environments and climates. On the following pages, we offer important guidelines which are to be taken into consideration when designing safe E-ChainSystems®. All specifications are based on test results from the igus® laboratory and our field experience since 1971. Simply fill in the "igus® system design" fax sheet or log onto the igus® web site at igus.eu and e-mail us your technical specifications, or call us. We will provide a comprehensive quote by the end of the next business day.

Laboratory and practical experience

Our calculations and analyses are based on the result of ongoing practical tests in our Technical Center and our experience with gliding applications. The focal points of our tests are push-pull forces, friction values and abrasion under widely varying conditions and speeds, as well as factors such as dirt, weathering or impact and bumps. We test all system components such as cables, hoses, strain relief and other accessories, in addition to the E-Chains® or E-Tubes and Guide Troughs.

The igus® test laboratory for E-Chains® and Chainflex® cables

igus® Terms | **Alphabetical Order**

Application-Icons

Unsupported - short travels

Gliding - long travels

Vertical hanging

Vertical standing

Side-mounted

Rotary motion

Horizontal and vertical

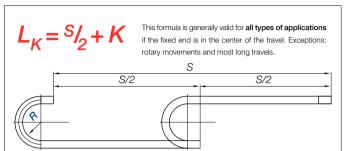
Nested

Side by side

Combined motions

On looking through and handling of this catalog, you will find the following terms and formula:

Short cut		Describtion	
α	=	The rotation angle of the rotating machine element	[°]
ΔΜ	=	Deviation of the center point	[mm]
а	=	Acceleration	[m/s ²]
AR	=	Outer radius, E-Chain®	[mm]
Ва	=	Outer E-Chain® width	[mm]
Bi	=	Inner E-Chain® width	[mm]
B _{Ra}	=	Guide trough outer width	[mm]
B _{Ri}	=	Guide trough inner width	[mm]
D	=	Over length E-Chain® radius in final position	[mm]
$\overline{D_2}$	=	Over length for long travels gliding	[mm]
FL _B	=	Unsupported length with sag	[m]
FL _G	=	Unsupported straight length	[m]
FL _U	=	Unsupported lower run	[m]
FZ _{max}	=	Maximum additional load	[kg/m]
Н	=	Nominal clearence height	[mm]
H ₂	=	Installation height with lowered mounting	[mm]
ha	=	Outer E-Chain® height	[mm]
H _F	=	Required clearance height	[mm]
hi	=	Inner E-Chain® height	[mm]
H _{Ra}	=	Outer trough height	[mm]
H _{Ri}	=	Inner trough height	[mm]
IR	=	Inner radius, E-Chain® (TwisterChain®)	[mm]
K	=	Add-on for bending radius	
		(K is taken from the data tables of the individual igus® Series)	[mm]
K ₂	=	Further add-on if the mounting bracket	
		location is set lower (for long travels)	[mm]
L _K	=	E-Chain® length	[mm]
n	=	Number of links	[1]
n _{Mon}	=	Number of installation sets (left/right)	[1]
n _{Ri}	=	Number of trough-sets (left/right)	[1]
R	=	Bending radius	[mm]
RBR	=	"Reverse bending radius"	[mm]
S	=	Length of travel	[mm]
s _{l2}	=	Half length of travel	[mm]
T	=	Pitch	[mm]
v	=	Speed (travel)	[m/s]
X,	=	Inner machine-construction space (TwisterChain®)	[mm]
<i>X</i> ₂	=	Outer radius chain, including clearance (TwisterChain®)	[mm]


Formula		Description
$SFL_B = 2 \bullet FL_B$	=	Calculation of maximum travel length, unsupported with sag
SFL _G = 2 • FL _G	=	Calculation of maximum travel length, unsupported straight
$B_{Rl} \ge Ba + 5$	=	Calculation of the minimum guide trough width
H _{RI} ≥ 2 • ha	=	Calculation of the minimum guide trough height
K = π • R	=	Add-on for bending radius
$L_K = S_{12} + \Delta M + K$	=	Calculation of chain lengths - for all types of applications,
		fixed end is outside the center of travel
L _K = S/ ₂ + K	=	Calculation of chain lengths For all types of applications, fixed end in
		the center of travel, except rotary movements and most long travels [m]
$L_K = S_1 + K_2$	=	Calculation of chain lengths for long travels,
		fixed end in the center of travel [m]

Calculation of E-Chain® lengths

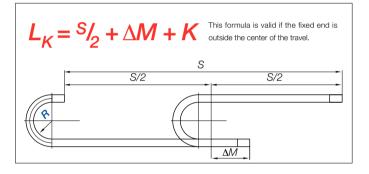
If the fixed end of the **E-Chain**° is located in the center of the travel, the E-Chain° length " L_{ν} " is calculated by using half the length of travel and adding the value "K" for the curved length. (You can obtain the value "K" from the tables in the catalog.) Placing the Fixed End in the center of the travel is the most costeffective solution because it requires the shortest E-Chain®, cables and hoses.

The fixed end in the center of the travel is the most favorable solution

L_r = E-Chain® length

= Length of travel

= Bending radius ΔM = Deviation from

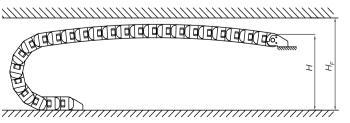

the center point

= π • R + "safety"

Add-on for bending radius (K is taken from the data tables of the individual igus® Series

= Nominal clearance height

 $H_E = Required$ clearance height



Camber

Camber is the curve of the upper run along its unsupported length. All igus® E-Chains® are manufactured with camber, special "no camber" E-Chains® on request. The camber allows for longer unsupported lengths and increases service life and operating safety. In the Installation Dimensions section of each respective E-Chain® description, you will find the measurement $H_{\scriptscriptstyle E}$, which specifies the **necessary clearance** height, taking the camber into account, Upon request, we can deliver E-Chains® without camber for restricted space applications - however, these "no camber" chains do not have the same load-bearing capacity. Please consult igus®.

"No Camber" - Special "NC" E-Chains® with no camber also available. Please consult igus®.

Necessary clearance height depends on the camber of the E-Chain®. Find values for the necessary clearance height "H_E" on each product page.

Diagrams unsupported length ▶ page 1.12

igus® GmbH 51147 Cologne

1.6

igus

Application-Examples | igus® E-ChainSystems®

Long travels (441 m) with Rol E-Chain®.

Long travel applications ▶ page 1.16

High fill weights (60 kg/m) with System E4.
Fill weights/Load diagrams ▶ page 1.12

Multi-axis Easy Triflex® on a production line, combined movements ▶ chapter 2

ReadyChain® under water. System E4 and Chainflex® CF9, ReadyChain® ▶ page 1.41

ReadyChain® with combined motions on tooling machines ▶ page 1.41

Series E6.52 high speed (15 m/s) low noise operation, optimized noise level ▶ page 1.11

Crash test unit: 22 m/s speed and 784 m/s² acceleration, travel speed ▶ page 1.19

Complex movements with Triflex®R, combined movements ▶ chapter 2

Cleanroom and Triflex® R
Technical Environment ► chapter 2

Extension links for E2 and E4 for large conduits, cable and hoses ▶ page 1.28

Zig-Zag movements, 36 m height with E4/4. Zig-Zag movements ▶ page 1.21

igus® System E6 - High acceleration and ESD safety, ESD & ATEX ▶ page 1.35

Unsupported application System E4, up to 50 m/s speed ▶ page 1.8

Unsupported, side-mounted E4 Series R188 ▶ page 1.24

Unsupported application System E4 ▶ chapter 7

Gliding application System E4, up to 500 m realized ▶ page 1.16

Gliding, side-mounted Series E4/4 ▶ page 1.24

Gliding application System E4 ▶ page 1.23

Vertical, standing Series E4/light, up to 6 m possible ▶ page 1.22

Rotary movement System E4 ▶ page 1.26

E-Chains® side by side as individual or "multiband" - Series Zipper ▶ chapter 4

Vertical, hanging Series E4 up to 40 m possible ▶ page 1.20

Spiral and rotary movement TwisterChain® ▶ page 1.26

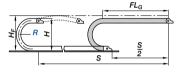
Combined movement Series Triflex[®] ▶ chapter 2

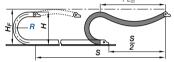
Unsupported

If the upper run of the E-Chain® operates without touching the lower run over the entire travel, it is called an "unsupported" application.

Unsupported length

The distance between moving end and the beginning of the radius curve of the F-Chain® is called the "unsupported length." It is always dependent upon the type of E-Chain® and the fill weight.




The "FLG" type of installation always generates the longest service life and can be operated with the max. values for speed and acceleration.

Unsupported | Short Travels

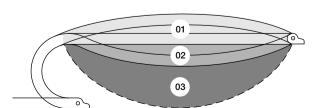
Example for unsupported straight FL_G

Unsupported applications

The "unsupported" application is the most common. igus® E-Chains® are very well suited for high dynamics and long service life. The maximum unsupported length is dependent upon the fill weight and the type of E-Chain® or E-Tube. As a result, we differentiate among three types of unsupported length:

01) Unsupported with straight upper run FLG

The " FL_G " E-Chain® applies when the upper run either has camber, is straight, or has a maximum of 10-50 mm sag, depending on the size of the chain. The " FL_G " type of installation is always preferred. The E-Chain® runs quietly and is not exposed to any additional vibration.


02) Unsupported with permitted sag FL_B

The "FL_B" E-Chain® applies when the sag amounts to more than 10-50 mm, depending on the chain size, and less than a defined maximum sag. This maximum sag is dependent on the type of chain. The "FL_R" application is technically permissible in many cases. It becomes problematic if the acceleration and the travel frequency are high.

03) "Critical sag"

If the sag is greater than permissible for " FL_B ", then we refer to it as "critical sag." An installation with critical sag must be avoided or reserved for extreme circumstances. An E-Chain® should never be installed with critical sag. There are applications which, after a very long period of use, reach the stage of "critical sag." The E-Chain® or E-Tube should be replaced at that time.

Please contact us if your application reaches critical sag!

The following important factors should be considered to select the correct E-Chain®:

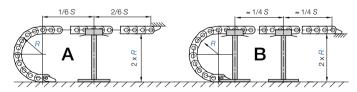
- Unsupported length
- Speed
- Acceleration
- Service life Load bearing areas
- Noise level
- Technical environment

Unsupported Length

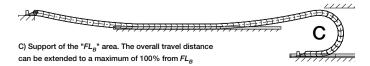
Example of unsupported permissible, FL,

What to do if the unsupported

length is insufficient


If your application, fill weight and travel fall outside the "unsupported length" parameters of the desired E-Chain®, you have the following options:

 Select a more stable igus® E-Chain®
 Support the E-Chain® in the unsupported area (this possibility has restrictions for acceleration, speed and noise as a consequence - three fundamental examples are detailed to below - please consult igus® if you are considering this possibility - we will gladly provide you with a detailed proposal)


Use a "multiband" chain or "nest" two E-Chains® inside one another (please consult igus® regarding these options) Design the travel distance as a "gliding application".

Series 28 with support of the "FLR" area

Support of the "FLG" area. A) The overall "straight, unsupported travel" can be increased here by a maximum of 50% of the $FL_{\rm G}$ and in case of option B) by a maximum of 100%

Standard values of max speed and acceleration: Unsupported FL_G FL_B 20 3 v max. [m/s] v peak [m/s] 50 a max. [m/s²] 200 a peak [m/s2] 784

Standard value of FL_G service life: 10 million cycles

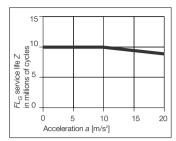
Preferred Series for max. speed and acceleration

System E6 ► chapter 8

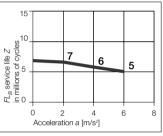
System E3 ► chapter 8

chapter 4

chapter 5


chapter 7

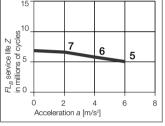
Zipper


F4 1

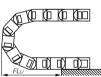
Series 255

Unsupported | Short Travels

Standard values on service life for FLG, (unsupported, straight), dependent on acceleration


Standard values on service life for FL (unsupported, sag), dependent on acceleration

Speed, acceleration and service life


For unsupported applications, the acceleration a, is the critical parameter. High acceleration can cause the E-Chain® to vibrate and reduce its service life. This is a particular danger if the E-Chain® already has a sag greater than the FLG value. Max. values for acceleration, speed and service life are achieved only with E-Chains® incorporating the FL_G design. FL_G designed E-ChainSystems® can sustain very high loads. To date, a peak acceleration of 784 m/s2 has been achieved during continuous use. Through ongoing testing in the igus® laboratory and from practical experience, standard values for service life have been formulated. Our tests confirm that these standard values apply to all igus® E-Chains® and E-Tubes. It is crucial to determine whether the application will be designed as unsupported straight FL_G or unsupported, with sag FL_B.

Load-bearing surfaces

Unsupported E-Chains® normally require some type of surface on which the lower portion of the E-Chain® runs. A wide range of configurations is available, as the drawings on the right demonstrate. Many material options are feasible: Metals, polymers, stone, wood, concrete, glass, etc. We also have solutions to minimize the noise generated by the chain's lower portion. Please consult igus®. When selecting the running surface, be sure dirt and debris cannot collect in the E-Chain® path.

Different surfaces + quide troughs are possible

Mounting brackets

We recommend pivoting mounting brackets as standard for unsupported applications. Pivoting mounting brackets compensate for the camber, can be installed more easily and decrease the load on the first E-Chain® link in operation. Exception: If the acceleration is greater than 20 m/s² or if the height is limited to the H_E measurement, locking mounting brackets keep the E-Chain® under the H_E measurement.

We recommend pivoting mounting brackets as standard! We recommend locking mounting brackets as standard if high speeds > 20 m/s or accelerations > 20 m/s2

Unsupported lower run

E-Chains® without support along the lower run have restricted use. The value FL,, usually must be determined in a test by igus®. The maximum permissible amount of the projection depends on the fill weight, the selected E-Chain®, the dynamics, and other factors, because the various combinations of these parameters can produce very different results. If the lower run of the E-Chain® cannot be supported over the whole travel. please consult igus®.

System E4 partially unsupported - please consult igus® regarding this type of configuration

Unsupported | Noise-Optimized

Minimize noise levels with igus® E-ChainSystems®

The igus® program offers you optimal noise-reduction E-Chains®. The table below briefly illustrates the differences in noise level among various E-Chains®. In addition to the E-Chain®, the running surface, the dynamics and the cable and hose package play a role in overall noise generation. Have our specialists design the quietest E-ChainSystem® for your application, for example:

A reduction of 3 dB(A) sounds like a 50% reduction in the noise level to the human ear

System T3 ≤ 33 dB(A)

Optimal smoothness of motion was the prime development goal, as well as making it an economic solution. The igus® T3 profile chain is very flexible and runs -due to the special geometry- very smooth. A measurement indicates a value of ≤ 33 dB(A) at 1 m/s and with an unsupported length with Series T3.29.050.038.0, and all this with a sound pressure level generated by external noise.

System E3 - low-noise, 38 dB(A)

Long-term tests in the igus® acoustic laboratory showed reductions of 19-20 db(A) compared with standard E-Chains®, measured at a speed of 1.8 m/s and an acceleration of 3 m/s2. Figure determined in the igus® laboratory in accordance with DIN 45635, taking into consideration background noises, for the Series E3.22.060.044.0.

System E6 \leq 46 dB(A)

A measurement conducted by the Rhineland Technical Inspection Authority (TÜV Rheinland) in May 2002 indicates a value of ≤ 46 dB(A) at 2 m/s and with an unsupported length of 1.5 m with Series E6.52.10.100.0, and all this with at least 10 dB(A) sound pressure level generated by external noise. The System E6 runs due to their small pitch very smooth. (rest weg lassen, kann ich nciht übersetzten)

System E4 \leq 46 dB(A)

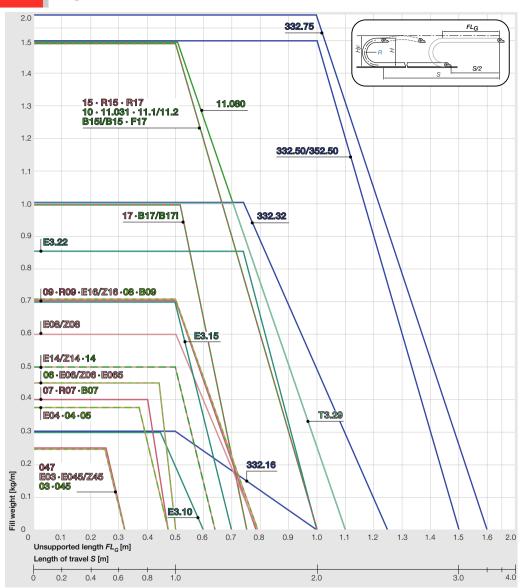
A measurement by the Rhineland Technical Inspection Authority (TÜV Rheinland) for System E4/101, Series 221.10.200.0 indicates a value of 46 dB(A) at 1,5 m/s with an unsupported length. Due to the special rubber pads (in red pictured) of the System E4/101, the noise will be extremly damped. The standard version of E4/00 is already very noice reduced due to their special designed stop dog.

Preferred igus® E-Chains®	
for minimizing noise	

_			_	
•	System	F3	chapter 8	3

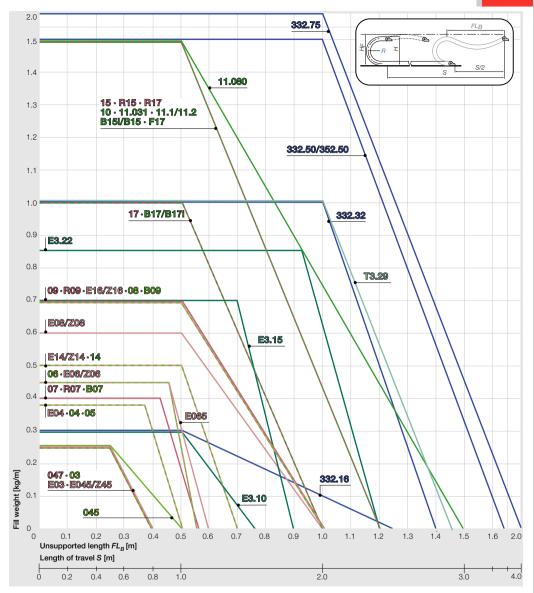
- System T3 https://www.chapter 8
- System E6 > chapter 8
- E4/101 chapter 7
- E4.1 chapter 7
- E4/00 chapter 7
- Series 255 ► chapter 5
- Easy Chain® ➤ chapter 3
- Series R58 ► chapter 6 Series R68 ► chapter 6

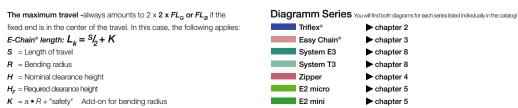
Selected noise tests - external noise corrected measurement values


E-Chain [®] System Ave		Averaging of the corrected	Test method
Series sou		sound pressure levels	
igus [®] Series T3.29	Т3	≈ 33 dB(A)	unsupported 1,0 m/s
igus [®] Series E3.22	E3	≈ 38 dB(A)	unsupported 1,8 m/s
igus® Series E6.52	E6	≈ 46 dB(A)	unsupported 2,0 m/s
igus [®] Series 221	E4/101	≈ 46 dB(A)	unsupported 1,5 m/s
igus [®] Series 255	E2 medium	≈ 53 dB(A)	unsupported 1,5 m/s
igus [®] Series E-Band	E-Band	≈ 59 dB(A)	unsupported 1,5 m/s
igus [®] Series 280	E4/00	≈ 64 dB(A)	unsupported 2,0 m/s
igus [®] Series 381	E4/101	≈ 66 dB(A)	gliding 3,0 m/s
Chain 1 Third Party Prod	duct	≈ 77 dB(A)	unsupported 2,0 m/s
Chain 2 Third Party Product		≈ 68 dB(A)	unsupported 2,0 m/s
Chain 3 Third Party Product		≈ 73 dB(A)	unsupported 2,0 m/s
Courses TIIV Desigland	overet Carios FC	200 Courses iguel laborators	

Source: TÜV Rheinland, except Series E3.22 - Source: igus® laboratory

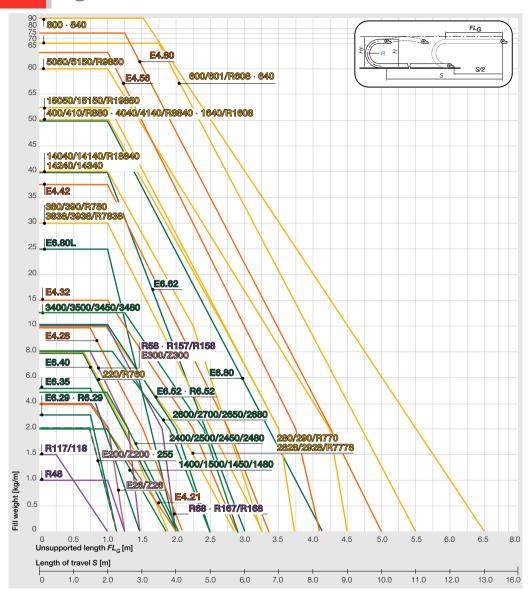
Unsupported | Straight FL_G | Small and medium E-Chains Load diagram use unsupported - short travels




Important information

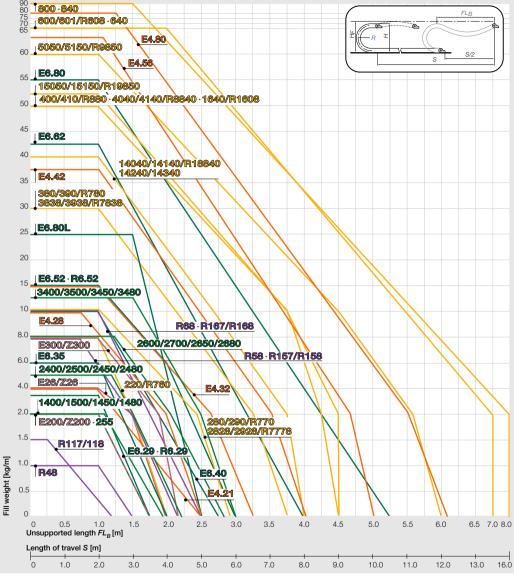
- Fill weight Weight of all cables and hoses, including contents (for media hoses) within the E-Chain*, typically given [kg/m]
- FL_G unsupported E-Chain® with straight upper run
- FL_B unsupported E-Chain[®] with permitted sag
- To the right of the FL_B graph of the diagram, the application is shown in "critical sag", which must be avoided!

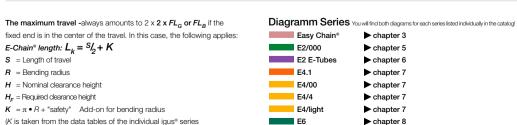
These values are essential for: ● Finding a suitable E-Chain® for your fill weight and travel distance ● Identifying the max. load for the selected E-Chain®. If you cannot meet your application demands using these parameters, keep in mind these specifications are conservative maximum values. In individual cases, they can be exceeded by up to 30%. Special solutions are also possible. Please consult igus®



(K is taken from the data tables of the individual igus® series

Unsupported | Straight FL_G | Large E-Chains $^\circ$ Load diagram use unsupported - short travels




Important information

- Fill weight Weight of all cables and hoses, including contents (for media hoses) within the E-Chain*, typically given [kg/m]
- FL_G unsupported E-Chain® with straight upper run
- FL_B unsupported E-Chain[®] with permitted sag
- To the right of the FL_B graph of the diagram, the application is shown in "critical sag", which must be avoided!

These values are essential for: ● Finding a suitable E-Chain® for your fill weight and travel distance ● Identifying the max. load for the selected E-Chain®. If you cannot meet your application demands using these parameters, keep in mind these specifications are conservative maximum values. In individual cases, they can be exceeded by up to 30%. Special solutions are also possible. Please consult igus®

igus

Gliding application -

If the upper run of the E-Chain® rests on the lower run, it is a gliding application

- Over 400 m travel
- 6 m/s speed
 (up to 10 m/s possible after consulation with igus*)
- Fill weights up to 70 kg/m

Gliding | Long Travels

Conveyor belt in quarry. Application with travel distance of 179 m, travel speed 67 m/min., fill weight 8 kg/m

Advantages for long travel applications with igus® E-Chains®

Travels over 400 m ● Gliding speeds up to 5 m/s (more in individual cases) ● Service life of 10 years and more with igus® E-ChainSystems® Further advantages of the design are: ● Many different types of cables and hoses can operate side by side in the same system (i.e. electrical, data, fiber optic cables with hydraulic and pneumatic hoses) ● Space-saving installation ● Quiet operation ● High accelerations ● Durable in wind, weather, dirt, and chemicals ● Simple assembly of the modular system on the spot ● Rapid assembly and replacement of cables and hoses

Design assistance, free of charge

We recommend that igus® calculate every gliding application for you. We will always offer the most costeffective solution, taking the technical requirements and operating safety into consideration. The system
solution designed by us is also automatically given an igus® system guarantee. To be able to advise you
accurately, we require the following specifications: Travel [m] Travel speed [m/min] or [m/s] Acceleration [m/s] Fill weight [kg/m] Maximum cable/hose outer diameter [mm] Type and number
of cables and hoses Required bending radius [mm] Cycle frequency (n/day or n/hour) Technical
environment. Please call us and within hours you will receive a detailed system proposal!

Trends in long travel applications

Very long travels with igus® Rol E-Chain. - Rolling instead of gliding: 75% less push-/pull forces due to special roller-links. Travels up to 800 m are possible. Longest igus® travel of 615 m with Rol E-Chain® and Chainflex®-cables ▶ igus.de/en/rolechain ● Long travel systems "off the reel" - save already at the state of assembling: Complete costum-made E-ChainSystems® with cables, connectors, strain relief - are delivered on the reel and "rolled off" into the preassembled Guide Troughs. Time savings of 50 % possible. Please ask us for references ▶ igus.de/en/readychain ● Long travels without guide troughts: Our AUTO-GLIDE system consists of self-guiding E-Chains® for travel up to 50 m travel lenghts (speed 1,5m/s) due to special gliding elements on the crossbars ▶ igus.de/en/autoglide ● Long travels with very small E-Chains®. Micro Flizz® offers the guidance of cables inside a small E-Chain® with high acceleration on long travel applications ▶ igus.de/en/flizz-n

Long travel "off the reel." Up to 100 m travel pre-assembled and ready to install

Longest igus® travel of 615 m with Rol E-Chain® and Chainflex®-cables

Preferred igus® E-Chains® gliding, long travels

- System P4 ► chapter 9
- Rol E-Chain® ➤ chapter 9
- System E4 ► chapter 7
- E2/000 ► chapter 5

9

Gliding | Long Travels

Gliding applications principle

For long travels, the upper run of the igus® E-Chains® rests on the lower run. The upper run glides partially on the lower run and partially at the same height on a glide bar. The diagrams below show this. For lateral guidance. a Guide Trough is necessary. If the stationary mounting bracket and the fixed end of the cables and hoses can be placed in the center, the chain length is calculated as follows: $L_{k} = {}^{S}I_{2} + K$. Depending on the technical data and the selected E-Chain®, the mounting point of the moving end of the E-Chain® must be lowered on some units Lowered mounting height. In our system analysis for long travels, we give exact details for your specific application.

Example of lowered mounting height

Example: Series 3838

E-Chain® length:

 $= \frac{S}{2} + K_2$

= Length of travel

Advantages lowered

 Longer travels possible Higher service life

due to less wear

movina end:

Space saving

= Bending radius

 $H_{\mathbf{p}_i}$ = Trough inner height

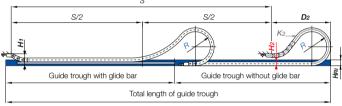
= Required clearance height

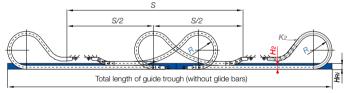
= Further add-on if the mounting bracket location is set lower (specified by igus*)

= π • R + "safety" Add-on for bending radius (K is taken from the data tables of the individual igus^e Series

 D_{\circ} = Over length for long travels gliding

H₂ = Installation height with lowered mounting


- Guide trough
- Glide bar


E-Chain® inner width Bi and bending radii R (on long travels) The min. inner widths of an E-Chain® on long travels depence on the bending radii of the E-Chain®.

igus® specifies: Bi_{min.} = R/4 Please contact igus® if you have large bending radii on long travel lengths.

Gliding applications = Pivoting mounting brackets

The function of an E-ChainSystem® for gliding applications (schematically) The fixed end of the E-Chain® is located in the center of the travel distance

For a configuration involving two opposed E-Chains®, the travel is measured as shown and selected when these factors apply: ● Restricted space ● High loads

Mobile camera. Olympic Games in Atlanta. S = 100 m, v = 10 m/s in push-pull operation

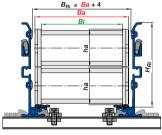
Robotics: quiet running, high acceleration. up to 10.000 cycles per day, System E4/4

ñ

Guide troughs are used for long travels. They allow igus® E-Chain® and E-Tubes to continue smooth, low-friction operation in these long-travel situations. Various guide troughsystems are available ▶ Guide Troughs, chapter 9

Gliding | Long Travels

Guide troughs

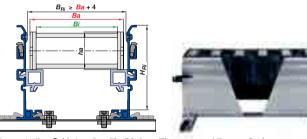

The guide trough is an important element in long travel applications. Usually, the height of the trough must be at least twice that of the E-Chain® link height. The sides must provide a chamfered opening. The trough inner width is the same as the E-Chain® outer width, plus 5 mm ($B_{Rl} = Ba + 4$). Along the side of the trough, where the upper run cannot glide on the lower run, glide bars must be installed. We recommend the

use of polymer glide bars from igus®. They are optimally matched to the E-Chain® material and achieve the lowest values for friction, noise and wear. Guide troughs with and without glide bars can be obtained for almost all igus® E-Chains®. Important: When assembling the trough parts, the following points must be given particular attention:

Properly align all trough parts upon installation
All screw heads should be flush with the trough
Solid connection with the glide surface. These points must be observed when using assembly-friendly igus® guide troughs.

Î

If the fixed point is in the center of the travel, use half of the guide trough with glide bars ... and the other half of the guide trough without glide bars



Demonstration: Guide troughs without glide bars - upper run glides on the lower run.

= F-Chain® outer width

= Guide trough-set
= Glide bar
= Installation set "Basic"
= C-Profile

Demonstration: Guide troughs with glide bars. We recommend the use of polymer glide bars from igus[®] made of igulen. They are optimally matched to the E-Chain[®] material and achieve the lowest values for friction, noise and wear.

Glide friction values for igus® E-Chains® made of igumid G and various glide bars

igumid G	igus [®] polymer	Glide	Anodized aluminum	Stainless
special	bar igulen	sheet steel		steel
Friction value	0,19	0,45	0,54	0,48

Travel speeds and accelerations

Gliding | Long Travels

Travel speeds up to 5 m/s in continuous operation are possible and in use on current applications. In special cases, even higher speeds are possible. For example, E4/00 and E4/4 E-Chains® achieve **speeds** of 22 m/s and accelerations of 784 m/s² in crash test units. (Only a few thousand cycles per year are required in this situation.) Acceleration plays a large role in the calculation. Differentiations must be made between normal operational acceleration and a sudden jolt of acceleration such as unexpected stops or so-called "E-stops." Even in these situations, igus® E-Chains® prove to be very durable.

Service life

We offer service life calculations for your application based on our extensive gliding application experience. As developers of polymer plain bearings, we possess vast material behavior knowledge which we apply to the development of F-Chains® as well. Units with 200 m travels have been in operation for 8 years with

Automated storage/retrieval system with System E2 and Chainflex® cables - travels up to 80 m and speed of 4.5 m/s

i

minimum maintenance. Units up

to 60 m travels have been in

operation for 12 years with almost

no maintenance. (Please consult

igus® for references and calcula-

tions for your project.) The main-

tenance-free aspects of igus® E-

ChainSystems® over long periods

and under rough operating

conditions is often the deciding

factor in choosing igus®. Our

system guarantee (depends on

the application) provides addi-

tional peace of mind.

Corrosion-free guide troughs are available in the material:

- Normally galvanized
- Stainless steel
- Seawater resistant aluminum

Special properties -Long travel applications

F-Chains® that are nested can be used in gliding applications. This type of installation is most often used when there is a width restriction. Guide troughs with special wall heights are necessary. E-Chains® running side by side, or in a "multiband" design can also be used in gliding applications. Higher fill weights often require special guide troughs which can be delivered either from stock or on short notice. We have also developed standard parts for unconventional solutions involvina large hoses in alidina applications.

Technical environment

Long travel applications using igus® E-Chains® run in water, in dirt, in the tropics, in explosion risk areas (with special design features) and many other conditions. Guide troughs can be supplied in corrosion-free materials. You will find more details in the Technical Environment section of this chapter.

Calculation

Comprehensive tests place us in the position of knowing our products precisely. Important factors in these tests are:

Push-pull forces under both ambient and extreme temperatures

Humidity and dirt

Friction values of the polymers, alone and against various glide surfaces

Behavior of Behavior of Behavior of electrical conduits under push-pull conditions

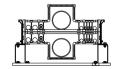
Behavior of hydraulic and media hoses under push-pull conditions

Service life, and noise generation.

If we cannot in fact calculate your application based on these factors, we will perform a practical test for you in our laboratory. Please consult igus.

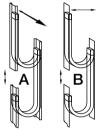
E4 in a pre-cast concrete plant with dust and concrete sediment

Technical data - long travels


Travel max	600 - 800 m
Travel speed max	10 m/s
Travel acceleration max	dependent on calculation, can be 50 m/s ² and more
Fill weight maximum	dependent on calculation, can be 70 kg/m and more

Nested, gliding E-Chains®

"Multiband" E-Chain



Large hose elements

ñ

We recommend locking mounting brackets for hanging applications. In restricted spaces, other solutions are possible with consultation

Lateral acceleration can occur in two directions - guidance is necessary

Principle of a hanging E-Chain® with lateral guidance - lateral accelerations in both directions are intercepted

Application | Vertical Hanging

Vertical, hanging applications

In accordance with the principle of "hanging" applications, heights of over 100 m are possible with igus" E-Chains". Chains with interior separation allow many different types of conduits to operate together in the same system without becoming entangled.

Cables and hoses

Two important factors in vertical hanging applications are how the conduits lay in the E-Chain® and and how they are secured at the end points: All cables and hoses must be hung so that they bear their own weight. The E-Chain® fuffills the function of orderly conduit bundling only and should not absorb any further tensile forces. igus® interior separation elements should be used for distinct division of all cables and hoses. The cables

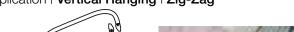
and hoses must be secured carefully to both end points of the E-Chain®. The strain relief must be designed so that the opposite run cannot catch. Safe strain relief and clear separation of the conduits are the basic prerequisites for hanging installations - Cables must be able to move freely and bear their own weight.

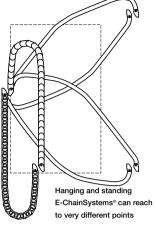
Camber

A normal igus® E-Chain® with camber is suitable for hanging use if enough space is available. If there is no room - as is frequently the case for storage and retrieval systems in narrow aisles - a "no camber" E-Chain® must be ordered. Order example: 2700.07.100.0.NC (NC = no camber). These versions are offered at no additional charge (Exception: System E2 E-Chain® + 6%), but with a slightly longer delivery period - usually 1-2 business days longer.

Vertical motion without lateral acceleration

If the application involves vertical motion without lateral acceleration, the E-Chain® can be installed without lateral support. If the space restrictions are severe, an igus® E-Chain® with no camber must be specified.


Vertical motion with lateral acceleration


If lateral acceleration occurs, lateral guidance of the E-Chain® must be provided in most cases. The diagram to the right shows the principle of such guidance. Partial guidance is also an option - however, it must at least cover the area in which the E-Chain® may sway. Lateral acceleration can occur in two directions. The lateral guidance must be installed accordingly. If you have a choice, the layout in **Figure A** is preferred. Additional guidance along the side of the E-Chain® helps to stabilize the chain further.

Guidelok vertical - no swinging sideways of the E-Chain®

The problem: Suspended E-Chains® swing out due to transverse acceleration - The solution: igus® "Guidelok" system. E-Chain® stays on track even with acute transverse acceleration! When the chain moves over the control button
the fixing button in the chain moves over the control button the fixing button in the chain moves over the control button the fixing button in the chain in the swinging out. For elevators, racking units, material handling equipment. igus® For vertical applications with lateral motion, igus® Guidelok offers a simple, costeffective and safe system solution. Please call us if you're interested in this product! . Typical applications Automated storage/retrieval systems Lifts Revolving storage systems Diagonal lifts All vertical applications page 9.98

Hanging assembly with one-sided U profile

System design

Due to the wide variety of combinations involving stroke height, cable/hose packages, dynamic values, and application environments, we strongly recommend you make use of our consulting services. Simply call. E-mail or fax us.

Preferred Series for vertical, hanging design

- E4.1 chapter 7 ● E4/00
- chapter 7 ● E4/4 ► chapter 7
- E2/000 chapter 5
- E2 E-Tubes ► chapter 6

Technical data - vertical hanging

Travel height max:	100 m
v max:	20 m/s dependent on height and stability of the E-Chain®
a max:	50 m/s² dependent onheight and stability of the E-Chain®

"Zig-Zag" design

The modular design of igus® E-Chains® facilitates this space-saving and unconventional solution. For modern platform technology, such as performance stages, a variety of conduits which adjust the stage height must be accommodated. Lack of space almost invariably presents particular difficulties. The photo below shows an E-Chain® in a "Zig-Zag" configuration produced by incorporating reverse bend radii or "RBR". The unextended E-Chain® is stored in a "basket" underneath the stage. If the stage is raised, the E-Chain® unfolds, generating little to no noise. This construction is possible with System E4/4 E- Chains® as well as many other types. Please consult igus® for these kinds of applications.

Preferred Series

for "Zig-Zag" design

With the E-Chains® of the Systems E4 - "Zig-Zag" solutions can be realised quickly and cost-effectively without special parts

Space-saving solution - stroke heights of over 20 m are possible

Phone +49- (0) 22 03-96 49-800 Fax +49- (0) 22 03-96 49-222

We recommend locking mounting brackets for standing applications

Application | Vertical Standing

Standing application with support of the first E-Chain® links - R68 E-Tube

Cables must be able to move freely and bear their own weight

Locking KMA mounting brackets Series 4040 E4/4

Mounting brackets

The mounting brackets must be attached so that the E-Chain® cannot bow out. The igus® program offers locking or one-sided, locking mounting brackets for almost all types of E-Chains®. Locking KMA mounting brackets are highly recommended because they can be attached flush to the machine.

Cables and hoses

Cables and hoses must be laid in the E-Chain® so that they can bend freely. For precise guidance of the cables and hoses, we strongly recommend igus® interior spacer modules. Cables must be strain relieved at both ends.

Preferred Series for vertical, standing applications

- E4.1 ► chapter 7
- E4/00 ► chapter 7
- E4/4E2/000E2/000Chapter 5
- E2 E-Tubes ➤ chapter 6

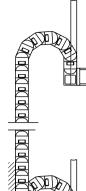
Technical data - vertical - standing applications

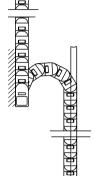
reclinical data - vertical - standing applications	
Max. stroke height - without support	≈ 4 m
Max. stroke height - with support of the first E-Chain® links	≈ 6 m
Max. stroke height - with full support	≈ 20 m
v max (dependent upon stroke height and weight)	20 m/s
a max (dependent upon stroke height and weight)	50 m/s ²

For higher E-Chain® stroke heights, it is generally recom-

mended that at least the first three links along the outer radius be supported. For maximum heights and strokes, the whole E-Chain® must often be

With lateral acceleration, the E-Chain® must be supported and, depending on the direction of this acceleration, be


guided along the side


supported.

Options for a standing application with support of the first E-Chain® links: on the right, with U-shaped guidance - on the left, with the support of the first chain links

Lateral acceleration

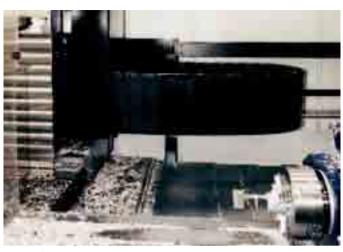
If lateral acceleration occurs, the E-Chain® should be supported along the outer radius. For higher E-Chain® heights, it is generally recommended that at least the first three links on the outer radius be supported. For maximum heights and weights, the whole distance must often be supported. Due to the wide variety of combinations involving weights, stroke heights, E-Chain® types and bending radii, we strongly recommend you make use of our consulting services.

U-shaped supported E-Tube for high lateral acceleration

Combined movements

Combined vertical and horizontal movements are possible with igus® E-Chains® for a cost-saving solution.

Combined horizontal and vertical movements


1.24

igus

Side-mounted E- Chains® - are strongly recommended if the installation height is restricted

Application | Side-Mounted

System E4/light E-Tube in direct chip area

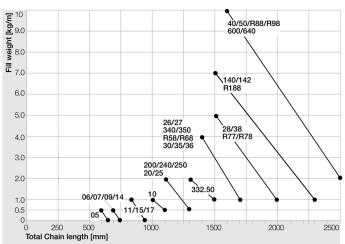
Standard values for unsupported lengths, side-mounted, upon request. The unsupported lengths can be extended by supporting the links next to the mounting brackets

Short travels with or without support

igus® E-Chains® placed on their side can be used unsupported to a limited extent. The turned "unsupported length" in this case is dependent on the following factors: ● Fill weight ● Width of the E-Chain® ● Bending radius ● Parallel placement. The greater the fill weight of the E-Chain®, the shorter the available unsupported length. When placed on its side, the E-Chain® width, in effect, becomes the height. As this "height" increases, the E-ChainSystem® becomes proportionally more stable. Small bending radii provide greater stability. If further movement in a second axis is added to the parallel motion of two chains, the unsupported length is impaired. For applications with low fill weight, the standard mounting brackets are adequate. If, however, the fill weight is high and the travels are long, the E-Chain® must then be supported either in whole or in part. Due to the variety of application possibilities, we strongly recommend you make use of our consulting services.

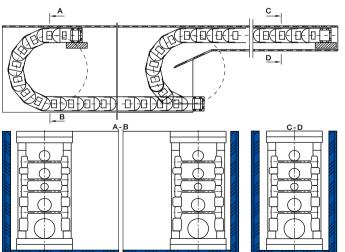
igus[®] - Series E4/4 with partial support

Unsupported - System E4

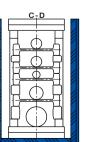

E-Chain®, side-mounted, supported System E4

For a side-mounted gliding application, we recommend locking mounting brackets. The E-Chain® is then pushed straight through the guidance

The igus® separation elements also offer safe solutions for heavy hydraulic hoses


The unsupported lengths can be extended by supporting the links next to the mounting brackets Please consult igus® for more Series and details!

Long travel, gliding


Side-mounted E-Chains® can travel over 100 m with adequate guidance. All E-Chain® types are designed to operate gliding on their side. The corresponding glide surface is usually an igus® polymer, stainless steel or galvanized steel, depending on how high the demands on the travel speed and service life are. Roller and ball bearings or additional gliding elements are not necessary for igus® E-Chains®. The diagram below shows the principle of a guide trough for side-mounted applications.

Cables and hoses

Cables and hoses must be guided so that the E-ChainSystem® can move freely at all times. The igus® modular separation options offers numerous possibilities, such as vertical separators and spacers, to keep these conduits separated and bending freely for maximum service life, igus® will gladly provide an application analysis, free of charge.

Principle of a guide trough for long travel, side-mounted

Preferred Series for sidemounted applications

Cable and hose guidance with separators and spacers

- E4.1 ■ F4/4
- chapter 7 chapter 7
- chapter 7
- E2 E-Tubes ➤ chapter 6

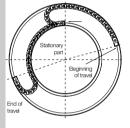
Application | Rotary Motion

Options 2. and 3. for rotary movements require less installation height. The E-Chains® glide mostly on surfaces made of polymer, stainless steel or steel and are guided through channels into a rotary movement. (See "side mounted" for further design tips.)

Bending radii, circular radii and E-Chain® widths are variable with this product line

Rotary motion with a "standard" E-Chain®

1. Rotary motion with TwisterChain®

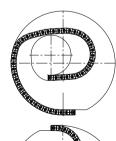

The TwisterChain® product line offers the biggest selection for rotary movements. TwisterChain® solutions are particularly recommended for spacerestricted applications such as articulated robots. revolving tables, etc.

2. Rotary motion with standard E-Chains®

The photo to the right shows an application which was achieved using "standard" E-Chains® (in this case, standard means that the F-Chain® only bends in one direction). Such solutions are possible if a great deal of space is available and if the angles of rotation are limited to a maximum of 450°. All igus® E-Chains®, E-Tubes and Chainflex® cables are appropriate for this situation.

3. Rotary motion with "RBR"

"RBR" is "reverse bending radius" and means that the E-Chain® can bend in two directions. Each igus® E-Chain® can incorporate RBR designs, with the exception of several radii, for the E-Tubes R117 to R9850 and for the Series 07, 09, 14, 15, and 17, The RBR does not necessarily need to be identical to the normal bending radius of an E-Chain®. For example: Part No. 280.15.100/425.0, describes a Series 280 E-Chain® with an inner width of 150 mm, standard bending radius of 100 mm and RBR of 425 mm. Most rotary motions can be achieved with the RBR option. Angles of rotation up to 540° have been realized. Below is an example of rotary motion using an RBR E-Chain®. Please consult igus® for your particular application.



Preferred Series for rotary motion applications

- All "RBR" E-Chains®
- TwisterChain® hchapter 2
- System E4
- chapter 7 ● E2/000 chapter 5

"RBR"-rotary movement with Series 5050, installed on a crane

Standard E-Chain® 3500.075.200.0. angle of rotation 225°

Series 250 with 360° RBR rotary motion on a robot

Rotary Motion

Application | Rotary Motion

Guide troughs

Depending on the dynamics and load of the application, the guide troughs are made of steel or stainless steel. For applications with a high cycle frequency, we suggest coating the guide troughs with polymer. igus® E-Chains® require no additional gliding elements for contact with the base or sidewalls, igus® offers complete systems including guide troughs, but we are pleased to offer support with drawings for your own construction.

Product range

F-Chains® with "RBR" are available as standard from stock for the complete Triflex® range. In addition, we supply a number of E-Chains® which are equipped as standard with "RBR". For all other types, "RBR" means custom-made, and we will be more than willing to offer you this option. igus® E-Chains® with "RBR", available as standard Easy Triflex®/Triflex®.

Guide troughs for rotary motion applications

Many igus® E-Chains® are available with "RBR" - reverse bending radius. Please note the information text of the relevant Series in the product range

RBR Radius Width Series

Technical data rotary motion: max. angle of rotation = 540° (larger angles possible) v max. = 10 m/s a max. = 20 m/s2

Rotary motion with RBR. diameter 6000 mm, with RBR, the inner ring rotates

Table of "RBR" E-Chains® available from stock

Part No.		Series	chapter	Part N
05.16.018/0	18	E2 micro	5	240.05
06.20.018/0	18	E2 micro	5	240.07
06.30.018/0	18	E2 micro	5	2400.0
06.64.018/0	18	E2 micro	5	250.05
10.1.028/02	28	E2 mini	5	250.07
10.1.038/60	00	E2 mini	5	27.07.0
10.1.048/04	18	E2 mini	5	2700.1
10.1.075/22	20	E2 mini	5	27i.12.
10.2.028/02	28	E2 mini	5	28.00.0
10.2.038/60	00	E2 mini	5	38.00.1
10.2.048/04	18	E2 mini	5	40.00.1
10.2.075/22	20	E2 mini	5	40.00.2
10.3.028/02	28	E2 mini	5	5050.0
10.3.038/60	00	E2 mini	5	B15i.0
10.3.048/04	18	E2 mini	5	E/Z14.
10.3.075/22	20	E2 mini	5	E/Z14.
10.4.028/02	28	E2 mini	5	E/Z14.
10.4.038/60	00	E2 mini	5	E/Z14.
10.4.048/04	18	E2 mini	5	E/Z14.
10.4.048/40	00	E2 mini	5	TE14.5
10.4.075/22	20	E2 mini	5	TE26.1

Part No.	Series	chapter
240.05.060/060	E2 medium	12
240.07.060/060	E2 medium	12
2400.09.055/250	E2/000	5
250.05.060/060	E2 medium	12
250.07.060/060	E2 medium	12
27.07.075/300	E2 medium	12
2700.15.150/090	E2/000	5
27i.12.125/400.0	E2 medium	12
28.00.063/063	E4/0	12
38.00.125/125	E4/0	12
40.00.135/135	E4/0	12
40.00.200/200	E4/0	12
5050.00.150/150	E4/4	7
B15i.050.100/460	E2 mini	5
E/Z14.1.038/038	Easy Chain®	3
E/Z14.2.038/038	Easy Chain®	3
E/Z14.3.038/038	Easy Chain®	3
E/Z14.3.075/075	Easy Chain®	3
E/Z14.4.038/038	Easy Chain®	3
TE14.50.028/028	SnapChain	3
TE26.120.063/063	SnapChain	3

- Chainflex® cables with TPEouter jacket are specially suitable for E-Chains® with "RBR" option
- Please use for E-Chains® with "RBR"-option a strain relief only for the moving end

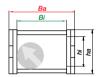
The E-Chain® Series appearing on the table are "RBR" versions available from stock. Almost all igus® E-Chains® can be delivered as a "RBR"- version. Please contact us for any special inquiry

Rules for

- Maximum conduit diameters
- Separation
- Bending radius

Electrical cables need at least 10% reserve space all around. hydraulic hoses 20%

Filling | Cable and Hose Packages



Hydraulics and electric cables are separated from one another in this example

General rules for cables and hoses in E-Chains®

The key advantage of an igus® E-ChainSystem® is the safe accommodation of various forms of data cables and energy suppliers in one system. We recommend the optimal separation layout of the conduits in the E-Chain®, but you. the customer, are still afforded the final choice. It is possible, for instance, to maintain minimum distances between bus and motor cables and mix pneumatics, electric and hydraulics in the same compartments. In addition to the quality of the cables used, the arrangement of

each conduit within the E-Chain® and the space allowed, are important for the service life of the system. Various separation options enable the adaptation of the E-Chains® to the specific requirements of each respective application. In this chapter, we give you detailed recommendations. Due to the variety of the application parameters, we strongly recommend you take advantage of our free consultation services. Simply give us a list of your cable requirements (or merely the required electrical or other services) and you will receive our recommendation by the end of the next business day.

The maximum conduit diameter is specified for each Series on its respective page

Maximum cable and hose diameters

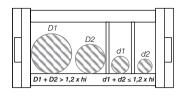
The maximum cable and/or hose diameter corresponds to the inner height of the selected E-Chain®/ E-Tube, with additional minimum clearance. This minimum clearance would be, for example, 10% for electrical round cables, 20% for hydraulic hoses. An E-Chain® is ideal if a minimum lateral gap to the next cable or hose has been factored in. Depending on the nature of the cables, the dynamics, and the expected service life, more clearance must be allowed. In specific cases, clearances may be altered further. Please consult igus.

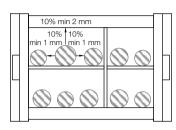
E- Chain®-Distribution

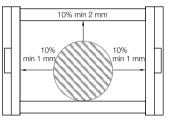
Cables and hoses with very different diameters should be laid separately. The separation is achieved using modular separators. Cables and hoses must under no circumstances have the opportunity to tangle. Therefore, the clearance height of a compartment with several similar cables or hoses next to one another must not amount to more than one and a half times the cable/hose diameter.

Neatly laid cables with igus® interior separation

Orderly laved cables with igus® interior separation


Reasons for distribution rules


Filling | Cable and Hose Packages


The cables and hoses must be laid so that they can move freely at all times and so that no tensile force is exerted at the radius of the E-Chains®. For high-speed applications and high cycles, cables or hoses must not be laid on top of each other without horizontal separation. The standard values for this are: Travel speed over 0.5 m/s and cycles over 10,000 p.a. igus® interior separation offers a safe solution for this situation.

Further guidelines for distribution

The cable or hose weight should be symmetrically distributed along the width of the E-Chain®. Cables and hoses with different outer jacket materials must not be allowed to "stick" together. If necessary, they must be laid separately. All igus® Chainflex® cables can be combined with each and other brands of cable or hose. The cables and hoses should always be fixed at the moving end. The fixed end should always involve strain relief. Exceptions are made only for certain hydraulic hoses with length compensation issues or other high pressure hoses (i.e. hydraulic hoses). Generally, the faster and more frequently the E-Chain® operates, the more important the exact positioning of the cables and hoses inside the chain. Due to the wide variety of the possibilities, we strongly recommend you take advantage of our free consultation services for your specific applications.

Clearance space "all around" for round electrical cables

Distribution rules:

D1 + D2 > 1.2 x hi

Rule 1:

If D1 + D2 > 1.2 x F-Chain® inner height, no separation between the two cables/hoses is necessary. Two cables/hoses should never be left unquided on top of one another or be allowed to become tangled.

$d1 + d2 \le 1.2 x hi$

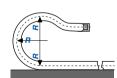
Rule 2:

If d1 + d2 ≤ 1.2 x E-Chain® inner height, a vertical separator or a horizontal shelf must be used to reduce the inner height, thereby preventing the entanglement of d1 and d2.

All-around clearance space in

- % for various cables/hoses
- Electrical round cables: 10%
- Flectrical flat cables: 10 % Pneumatics: 5-10%
- Hvdraulics: 20 %
- Media hoses: 15-20 %

Bending radius R


The bending radius of our E-Chain® depends on the "thickest" or "stiffest" cable or hose in your application. The bending radii of the E- Chains® should be adjusted to the recommendations of the cable or hose

The igus® program offers up to to 12 different bending radii from stock. Here, Series 50 used in the Storebaelt bridge projecty

manufacturer. The selection of a larger radius than the minimum will positively affect service life. The specification of minimum bending radii for cables and hoses refers to use at normal temperatures - other bending radii may be recommended. Please ask your cable or hose supplier for details

We recommend complete E-ChainSystems® - where bending radii for all cables and hoses, interior separation and service life are optimally matched.

igus® Chainflex® cables permit the smallest bending radius of 5 x d for one million strokes

Pinciple sketch bending radius "R"

Chainflex® cables - smallest bending radius of 5 x d

1.30

igus

Filling | Cable and Hose Packages

i

We will be pleased to provide you with recommendations for complete E-ChainSystems*: Bending radii of all cables and hoses, interior separation and service life are then optimally intermatched.

Corkscrewing: an effect of improper cable and hose placement in an E-Chain®

Example from igus® test laboratory: continuous development and testing of Chainflex® round electrical cables

Round electrical cables

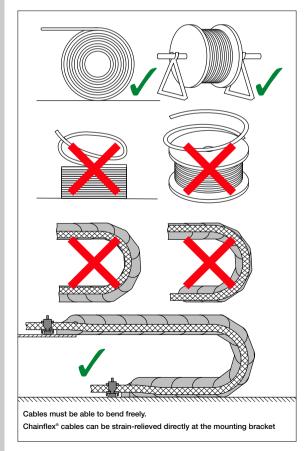
For electrical cables, the round cable is a safe, modular and cost-effective solution for E-Chain-Systems®. We recommend the following criteria for selecting the proper round electrical cables:

Small minimum bending radii and mounting heights

- Strain relief integrated directly into the mounting bracket Uncomplicated installation process no hanging, laying out, etc., of cables Long service life at minimum bending radius Service life expectations for your application (short or long travel, hanging, etc.) Test data on service life from realistic tests Flexible shields for shielded cables
- Abrasion-resistant and non-adhesive outer jackets
 Large selection to avoid expensive custom designs. For bus cables and fiber optic cable, special attention must be paid to how effective transmission rates and shielding remain after millions of cycles at the minimum bending radius.

Installation and strain relief of round electrical cables

The cables must be laid straight, without twisting. Cables must not be uncoiled from the top of the spool. igus® Chainflex® cables are immediately ready for placement directly into the E-Chain®. They need not be disconnected or laid out before installation.


The cables must be laid so that each individual cable can move freely from side to side.

The cables must be able to move freely along the radius. This must be double-checked if the upper run operates at the cable's maximum bending radius.

The division of the E-Chain's* interior using shelves or igus* interior separators is necessary if several cables and/or hoses with varying diameters are laid out. It is important to prevent cables and hoses from tangling.

For cables and hoses with different jacket materials, it is important to prevent them from "sticking" to one another. If necessary, they should be separated. igus* Chainflex* cables can be combined with all others.

Round electrical cables must be secured with strain relief at both ends. In exceptional cases, the cables may be fixed with strain relief at the moving end of the E-Chain* only. A gap of 10-30 x cable diameter between the end of the bending segment and the fixed point is recommended for most cables. Chainflex* cables can, on the other hand, be secured directly to the mounting bracket with strain relief (this has been confirmed with testing).

Filling | Cable and Hose Packages

Pneumatic hoses

In principle, the same rules apply for pneumatic hoses as for round cables. In practice, it has been demonstrated that pneumatic hoses are less susceptible to wear. After consultation, they can be laid together more closely than the "10% clearance all-around" rule. A double-sided strain relief is required under these conditions. For pneumatic hoses made of rubber, we recommend strictly following the "10% clearance" rule because they tend to adhere to each other and to other conduits.

Fully pre-assembled E-ChainSystem® with several pneumatic hoses

The igus® program also offers polymer pneumatic hoses called: "Chainflex® Air"

Flat cables and pneumatic hoses installed in an E-Chain® with full interior separation

When designing hydraulic hoses in E-Chains®.

Hydraulic hoses

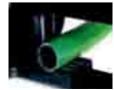
Flat cables

Flat cables must be able to move freely along the bending radius. Two flat cables next to one another should be kept apart with separators. If two flat cables are laid on top of one another, we strongly recommend the use of horizontal igus® shelving. Flat and round cables should be laid separately in the E-Chain®. Strain relief should be attached at both ends. Flat cables are only conditionally recommended for use in E-Chains®.

Flat cables - Outer jackets made of rubber must be specified particularly carefully, because of potentially high static friction.

igus® E-Chains® with hydraulic hoses in a tree-stripping machine

special attention should be paid to the expansion of the hoses when pressurized. Sufficient room must be left in the E-Chain® for this as well as the possible larger external diameter of the hoses under pressure. It is important for selected hoses to be sufficiently flexible (i.e. meet bending radius specified by the E-Chain®). The gliding ability and abrasion-resistant surface of the hoses are also important. All crossbars and shelves in the igus® E-Chain® minimize abrasion of hoses through wide, rounded and smooth surfaces. Normally, hoses with textile braiding are more flexible than hoses made of steel wire, while maintaining smaller outer diameters and better fatigue

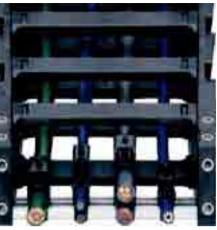

strength under reverse-travel stresses. As lateral movements of the hydraulic hoses within the E-Chain® can lead to increased abrasion of the hose material, they should be secured in position with vertical separators, but not forced. Special "locking" separators, which grip the opening crossbars of the chain, as well as the use of "spacers," prevent lateral shifting of the separators - they also ensure the hoses stay put in cases of strong vibration and impact on the chain.

Strain Relief - Hydraulic hoses are most often stretched lengthwise during operation. This must be taken into account when applying strain relief. More hose length is factored in to allow the hose to "breathe", or "floating" strain relief must be implemented. In some cases, one-sided strain relief on the moving end can be tolerated.

Rollclip - In almost all cases, the broad, smooth and rounded surfaces of all igus® E-Chains® are sufficient to protect hydraulic hoses from abrasion. In extreme cases, the igus® Rollclip can be installed. The hoses come in contact with a series of polymer cylinders which rotate. "Extreme" cases include particularly soft materials, particularly narrow bending radii or highly dynamic loads. Over 95% of all applications can be solved without Rollclips.

Hydraulic hoses need more space: 20% all-around clearance

igus® Rollclip, detachable

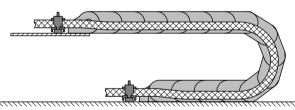

ñ

Ideally, the cables/hoses should be strain relieved at both ends of the E-Chain*. At the very least, they must be strain relieved at the moving end of the E-Chain*.

For more information on all igus® strain relief elements

chapter 10

Strain Relief Elements | Chainfix


Strain relief in KMA mounting bracket with C-profile

Strain relief for electrical cables

Strain relief can consist of standard elements or can be custom-made. For most applications, our standard program of C-profiles with mounting brackets and space-saving Chainfix clamps can be used. We also offer simple strain relief solutions using cable tiewraps and tiewrap plates. In ideal cases, the cables should be secured at both ends of the E-Chain® with strain relief (in a few instances, strain relief at the moving end of the E-Chain® is sufficient - please consult igus® for these cases).

Minimum gap of the strain relief and the beginning of the bending radius

Tests on our premises and in field applications have shown strain relief located at the last bending point of the E-Chain® has no influence over the durability of igus® Chainflex® cables. It is possible, therefore, to integrate the strain relief with the mounting bracket. This space-saving option for strain relief is offered by igus® for almost all E-Chains®.

Ideal installation of cables in E-Chains®. Chainflex® cables can be directly strain-relieved in the mounting bracket (minimum gap to the last curved E-Chain® link is not necessary)!

Chainfix strain relief in mounting bracket in practice - used here for cables and hoses

Features of chainfix clamps

 Optimal igus[®] Chainfix housing with reduced height
 Long service life for dynamic applications thanks to improved clamping elements Integration with KMA mounting brackets - saves both time and space during installation and available for complete systems with cables and strain relief
Improved housing foot clamp for easy fit into C-profile

Black housing and setscrews for attractive appearance Setscrews, tightened with Allen wrench, for easy installation

Mark of the installation direction

Now with better fixation due to optimized design

Tiewrap plates as individual parts

 Separate parts in switch cabinet construction or machine assembly ● Strain relief accessory for igus® E-ChainSystems® ● Attachment to mounting brackets Integration into the C-profile of KMA (polymer/metal mounting brackets)

Tiewrap plates with clip-on connection for the C-profile

The plates 3050.ZC and 3075.ZC can be clipped directly into the C-profile without bolts or any extra hardware. Clip-on tiewrap plates can be released and repositioned with just a screwdriver used as a lever

Chainfix clip - modular snap-on strain relief device

Chainfix clip is a series of clamps and bottom parts made of plastic for cable diameters ranging from 4 mm to 24 mm. Chainfix Clip is available for C-profiles, also suitable for assembly in the KMA mounting brackets and clip-on strain relief for cross bars

Quick assembly without any tools

2 and 3 layers on top of one another possible • Each layer can be detached and changed later on • High tensile forces in case of single-layer installation, decreasing with the number of layers

Chainfix nugget - for top hat rail and C-profile

Option 1: completey simple and universal cable fixation, for diameter with Ø 20 mm and Ø 30 mm ● Option 2: Fastening through clipping onto standard top hat rail

The smart helper for electricians in the machine building industry

Accessory for all KMA with integrated C-profile ● Strain relief for top hat rail ● Easy to assemble, without any screws and tools

Adjustable to every E-Chain® filling ● Very small space requirement ● Easy strain relief due to fixation with pre-harnessed cable strap

Strainrelief separator

■ Can be integrated in mounting bracket ■ Strain-relief separator can be positioned as required

Double strain relief possible Easy installation, cost-effective For Series E6.29, 2600/2700 (other Series upon request)

1.34

i

Technical environment:

- Fire resistance
- Radiation
- Hadiation
- Weathering
- Cold, heatExplosion areas
- Vacuum
- Hot chips
- Dirt. dust
- Cleanroom
- Chemicals

Technical Environment | Material igumid

igus® factory - automatic compounding and conveyor belt for igumid G

Technical environment and igumid G

The igumid G material, from which igus® E- Chains® are made, possesses the following wide-ranging features to cope with a variety of environments: the ability to handle pressure and strenuous loads, abrasion resistance, sturdiness, stable behavior at high and low temperatures, and suitability for outdoor use. Numerous application examples, from refrigerator blocks to steel mills, prove this. In extremetases, we also offer modifications and other igus® compounds as a solution. Please consult igus®.

Resistance to radiation

igumid G is very resistant to highenergy radiation. Under gamma radiation, in the range of 8 x 10^4 rd, the mechanical properties of igumid G change very little.

igumid G:

igumid NB: UL 94 V2 UL 94 V0 (upon request)

Flammability of igumid G

The flame-retardant characteristics of igumid G can be described using various classifications: Test aprocedure VDE 0304 parts 3-5.70 - classification Ilc. Tested according to UL 94 "Standard Tests for Flammability of Plastic Materials for Parts in Devices and Appliances" classification 94 HB for 3.2 and 1.6 mm thickness of the body. Tested according to DIN 4102 "Fire Behavior of Building Materials and Parts" classification materials class B-2. For further requirements, please consult igus* for special solutions, such as materials with self-extinguishing properties (UL V2 or UL V0). All E-Chains* (except for the Easy Chains* and Series 14) are made of from igumid G.

This robot is used for test purposes in British nuclear power plants

Temperature resistance

igumid G is very suitable for outdoor applications. In our experience, the mechanical properties of the E-Chain® are not impaired. igumid G is also UV-resistant. igus® E-Chains® are used in applications as cold as -40°C (40°F). Installation may be eventually compromised at temperatures below -25°C (-13°F). In such cases, we offer special solutions made from cold-elastic materials. 120°C (248°F) continuous temperatures are possible. However, the mechanical values are reduced and the service life is impaired.

igumid G has the classification UL 94 HB. igumid NB has the classification UL 94 V2. UL 94 V0 upon request

Flammability of igumid NB

All Easy Chains® and Series 14 Chains are made from the flame-retardant igumid NB material. These chains have the following flame-retardant classifications: ● UL 94 classification - V2 ● VDE 0304 Parts 3-5.70 classification - Ilb ● DIN 4102 flammability of materials - B2 ● Please consult igus® regarding material availability "V0"

Live broadcast from the Winter Olympics in Lillehammer - 75 m travel at -25°C (-13°F)

gumid G:

- UV-resistant
- Temperature range from:
 -40°C (40°F) to +120°C (248°F)

ESD & ATEX

Special ESD products and ESD tools must be used in numerous industrial sectors in order to protect sensitive electronic components against electrostatic discharge. Consequently an electrostatic discharge function applies in particular to energy ducting systems with their central role in automated sequences. igus® has developed the FSD F-Chain® for these demanding applications. They are made of material igumid ESD which immediately discharges per-

More ESD and ATEX information: www.igus.eu/atex

The hue of igumid ESD approximately corresponds to RAL 7015 slate-gray

manent electrostatic charges in controlled manner. igumid ESD consists of the igus® E-Chain® material which has been tried and tested for over 35 years now in millions of applications with special additives. These additives provide the required properties and, in mechanical requirements, even exceed the standard

material. Thus, for instance, the somewhat higher rigidity and the approx. 15% lower density can be used to implement a longer unsupported length, depending on application. The ESD E-Chain® features an even longer service life owing to the material. Unlike temporarily acting, applied conductive coatings or volatile, incorporated antistatics, the additives used provide durable and "maintenance-free" conductivity. One other advantage is the resistance to adverse ambient conditions.

igumid ESD with PTB certificate - We have received an official comment from the German National Standards Laboratory (PTB) on material igumid ESD and we are able to provide you with a copy on request

System E6 - 2nd Generation ESD Chains without pin and bores, longterm conductivity quaranteed

For many years, safety in hazardous areas and ESD protection in sensitive production areas have been given high priority at igus®. Since 1992, E-Chains® have been manufactured from our special "GC" material. Certified since 1994 by PTB (German federal office for Physics and Technology), the material was modified in 2002. In spite of homogenous conductivity of the material, common pin/bore design chains can hardly maintain their conductivity within normed conductivity tolerances in the long term. O Constant long term conductivity values

No contact surface wear

Proven standard product, now also conductive . Cycle life in lab test ≥10 Million cycles (more upon request) Underlies heightened QC procedures, with and without mounting brackets and in various install modes

IPA Fraunhofer institute certifies "Level 1" discharge performance, acc. to SEMI E78-0998 ESD, even for off-the-shelf standard E6 material.

51147 Cologne gus® GmbH

Technical Environment | Clean Room and ESD | Safe and Clean with E-Chains®

igus® goes clean room - qualification of E6 and other igus® E-Chains®

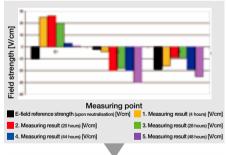
In many applications where cumbersome special solutions are used, a simple standard E-Chain® can be used instead. A comprehensive test program was devised and performed for both gliding use and unsupported use. For many applications, the E-Chains® in special materials are practically abrasion-free. Detailed test results are available upon request. IPA tests confirm that standard jous® E-Chains® meet clean room requirements. "Tested and certified as very good!" E-Chains® for clean room applications on the test stand Clean room environments demand very high wear resistance of moving parts. E-Chains®, for example, must be very wear resistant, in order to meet norm requirements for such a sensitive environment.

IPA Fraunhofer Institute has tested igus® Series E3, E6 and Easy Chain® as follows:

- ISO class 1, as per stringent norm DIN EN ISO 14644-1 for System E3. Series E3.15.040.075.0 at v = 0.5 m/s. 1 m/s. 2 m/s
- ISO class 1, as per stringent norm DIN EN ISO 14644-1 for System E6 special material*, Series E6.29.060.150.0.CR at v = 0,5 m/s, 2 m/s
- ISO class 3, as per stringent norm DIN FN ISO 14644-1 for System F6 standard material. Series F6.29.060.150.0 at v = 0.5 m/s. 1 m/s. 2 m/s
- ISO class 2, as per stringent norm DIN EN ISO 14644-1 for Series Easy Chain® E14.3.038 at v = 1 m/s

Test setup: Particle generation measurement

Particle >0,2µm per min Measuring period [min] Measuring point 1 Measuring point 2


Measuring point 4

ISO Class 2 acc. to DIN EN ISO 14644-1 for E14.3.038.0

Test setup: Field strength measurement

Measurement result: Field strength E6.29.050.055.0

Level 1 ESD-compatibility acc. to SEMI E78-0998 for E14.3.038.0 and E6.29.050.055.0

and automation

Classification chart

Measuring point 3

Ciassification	i Chart			
Class per DIN	Equivalent to	Equivalent to	Classification	Speed
EN ISO 14644-1	VDI 2083	US Fed.Std. 209E	Series	[m/s]
ISO class 1	no comparable classification	no comparable classification	E3.15.040.075.0	0,5 / 1,0 / 2,0
ISO class 1	no comparable classification	no comparable classification	E6.29.060.150.0.CR*	0,5 / 2,0
ISO class 2	no comparable classification	no comparable classification	E14.3.038.0	1,0
ISO class 3	class 1	class 1	E6.29.060.150.0	0,5 / 1,0 / 2,0
ISO class 4	class 2	class 10	Fraunhofer	
ISO class 5	class 3	class 100	Institut	
ISO class 6	class 4	class 1.000	Production ted	hnology
100 1 =			Production ted	Jillology

^{*}special material "clean room"

class 5

class 6

ISO class 7

ISO class 8

class 10.000

class 100.000

igus® - Experience with

Dust, dirt, mud, compost, wood.

textile fibers, paper dust, abrasive

paste, cooling agents, glass dust,

glass splinters, coal dust, sand.

corundum and much more.

Technical Environment | Dirty Environments

Splatter, hot chips

Laboratory tests and numerous field applications prove that igus® E-Chains® and E-Tubes reliably protect cables in welding robots and machine tools since 20 years. E-Tubes made from the igus® igumid HT material are resistand against burnt-in chips up to 850°C (1,562°F), no chips do stick. This opens new possibilities for replacing difficult-to-handle steel tubes. Program range: All standard E2 and E4 E-Tube sizes, upon request, Please note; igumid G in direct contact with large amounts of melted aluminum is not recommended.

Dirt, dust, chips

Materials and design make igus® E-Chains® excellent problem-solvers in harsh environments. Experience and application references are available upon request. Please consult igus® with your application.

Vacuum

igus® E-Chains® made of igumid G can be used in vacuum applications. Very little outgassing occurs.

Chemical resistance

igumid G is resistant to fuel, lubricants, oils, fats, alcohol, ester, ketone, and aliphatic and aromatic hydrocarbons. Oxidants and acids are damaging. The table page 1.39 shows an excerpt of the precise details concerning resistance to chemicals. Acid-resistant E-Chains® are available upon request.

Coolant resistance

E-Chains® and E-Tubes have proven resistant to cooling agents. However, we are always willing to perform individual tests if you have particular problems or advanced developments. Table on resistance to chemicals ▶ page 1.39.

E-Tubes that repel hot chips, up to 850 °C with the igus® "igumid HT" material. Further Information ▶ www.igus.de/en/HT

igus® E-Tubes in the chip area of machine tools

Also hot asphalt is no problem for igus® E-Tubes, Series R48

Compost sludge - numerous related references available upon request

Particularly suitable E-Chain® Series for dirt, dust, chips

- E4/4HD chapter 7
- System E4 ► chapter 7
- E2 E-Tubes chapter 6
- E2/000 chapter 5

Phone +49- (0) 22 03-96 49-800 9 +49-

Material | igus® Material Data

Plastics for longer life® - igus® know-how in polymer materials

Each year, igus® engineers develop more than one hundred new plastic compounds and test igus®-products in more than 5,000 experiments per year. That's how in recent years they have built an extensive database of the tribological properties of polymers. This database makes it possible for us to assess better most of the applications in advance and provide our customer with confidence during use. Our calculations and analyses are based on the result of ongoing practical tests in our Technical Center and our experience with gliding applications. The focal points of our tests are push-pull forces, friction values and abrasion under widely varying conditions and speeds, as well as factors such as dirt, weathering or impact and bumps. We test all system components such as cables, hoses, strain relief and other accessories, in addition to the E-Chains® or E-Tubes and Guide Troughs.

Material data igumid

Material data table	Units of	Values	Values	Values	Values
	Measure	igumid G	igumid NB	igumid ESD	igumid TE
Yield stress	MPa	190/130	78/40	_	-
Elongation at break	%	004/006	20/210	_	-
Elasticity module (tensile test)	MPa	9000/7000	2900/1200	_	-
Impact strength +23°C	kJ/m²	55/65/55	not broken	_	-
Impact strength -40°C	kJ/m²	40	90	_	-
Ball indentation hardness H 961/30	MPa	230/160	150/60	_	-
Heat conductivity W/k * m	Ω/k * m	0,23	-	_	-
Dielectric constant	10 ^h Hz	3,9/6,2	_	_	_
special transitional resistance	Ω*cm	>1011	>1011	<109	-
Impact strength density 0,6-0,8 mm	kV/mm	80	16-18	_	-
Surface resistance ROA	Ω	>1011	>1011	<109	-
Density	g/cm³	1,37	1,14	1,2	1,02
Absorption of humidity 23/50 RF	%	1,4	3,4	1,9	1,1
Coefficient of sliding friction	-	0,3	0,3	0,3	0,3
Fire resistance as per VDE	-	FH2	_	_	-
Fire resistance as per UL	-	HB	V-2	HB	HB
Color	-	≈ RAL 9004	≈ RAL 9004	≈ RAL 7015	≈ RAL 9004
Maximum water absorption	-	5,6	7,6	7,3	-
Limit of elasticity in bending	MPa	7.800	3.000	9.500	-
Bending strength	MPa	240	120	230	-
Hardness Shore D	-	79	79	83	-
Upper long-term application temp.	_	120°C (248°F)	80°C (176°F)	80°C (176°F)	70°C (158°F)
Upper short-term application temp.	_	180°C (356°F)	170°C (338°F)	150°C (302°F)	140°C (284°F)
Lower application temp.	-	-40°C (-40°F)	-40°C (-40°F)	-40°C (-40°F)	-40°C (-40°F)

Medium	Concentration	Material
	Weight %	igumid G /NB
Acetone	100	+
Formic acid (aqueous)	2	0
Ammonia (aqueous)	10	+
Gasoline	100	+
Benzole	100	+
Bitumen	100	0
Boric acid (aqueous)	10	+
Butyric acid	100	0
Calcium chloride (aqueous)	Sat. aq. sol.	+
Chlorinated hydrocarbons		+
Chlorine water	Sat. aq. sol.	-
Chromic acid (aqueous)	1	0
Diesel oil	100	+
Iron II cyanide	30	0
Acetic acid	2	+
Color		+
Fats, cooking		+
Fluorinated hydrocarbons		+
Formaldehyde (aqueous)	30	0
Hydraulic oils		+

Material | Chemical Resistance | E-Chain® Colors

Caustic potash Resistance classes

+ = resistant

O = conditionally resistant
- = non-resistant

Medium (Concentration	Material	
	Weight %	igumid G /NB	
Potassium carbonate (aqueo	us) 60	+	
Potassium sulphate (aqueous	s) 100	+	
Methyl acetate	100	+	
Milk		+	
Mineral oil		+	
Sodium carbonate (aqueous)	50	+	
Oil, cooking		+	
Oil, lubricating oil		+	
Oleic acid	100	+	
Paraffin oil		+	
Perchlorethylene	100	+	
Polyester resins (with styrene))	+	
Propane gas		+	
Mercury		+	
Hydrochloric acid	pH2	0	
Hydrochloric acid	2	-	
Hydrochloric acid	10	_	
Ink, printing ink		+	
Vaseline		+	
Tartaric acid		0	
Zinc sulfate (aqueous)	10	+	

Sat. aq. sol. = saturated aqueous solution

Conc. aq. sol. = concentrated aqueous solution

The values specified are values determined by laboratory tests and are material-specific. All specifications apply to black E-Chains*.

Colors and special solutions

All E-Chains® made from igumid G are available in the colors listed below. Additional colors are usually feasible. Colored E-Chains® are basically not available from stock. Contact igus® for more information regarding colored E-Chains®. All values listed apply to stability (e.g. unsupported lengths) and material characteristics for black E- Chains® nly. Colored E-Chains® may have altered characteristics. This also applies for all E-Chains® made from special materials (e.g. conductive E-Chains® made from igumid GC or other special materials).

"RAL" Numbers					
	Black	≈ RAL 9004	Index .0		
	White	≈ RAL 9003	Index .1		
	Violet	≈ RAL 4008	Index .5		
	Yellow	≈ RAL 1018	Index .4		
	Orange	≈ RAL 2003	Index .2		
	Red	≈ RAL 3002	Index .6		
	Blue	≈ RAL 5005	Index .8		
	Green	≈ RAL 6011	Index .7		
	Grey	≈ RAL 7023	Index .3 for Chains		
	Dusty grey	≈ RAL 7037	Index .3 for Tubes		
	Agate grey	≈ RAL 7038	Index .11		
	Light grey	≈ RAL 7035	Index .14		
	Black grey	≈ RAL 7021	Index .13		
	Slate grey	≈ RAL 7015	only ESD-E-Chain®		
	Yellow/black	_	Index .9		

Quality inspection of every

E-Chain® production

Test location for

ESD-E-Chains®

Certifying | Standards and Certificates

Examples for test certificates and approvals

ISO 9001

igus® has been certified since November 1996

TÜV construction test

igus® E-Chains® and E-Tubes are construction-tested by TÜV Rheinland. igus® E-Chains® were tested and passed by TÜV Rheinland in accordance with the valid machine guidelines. As a result, the user of igus® E-Chains® need not worry about meeting CE requirements through testing for this portion of the machinery. The construction test 2PFG 1036 / 10/97 for protective equipment includes the following:

Application and safety

- ◆ Assembly
 ◆ Fatigue strength
 ◆ Resistance to external influences
- Sharp corners and edges

igus® E-Chains® made of standard material igumid G correspond to the German federal office of Physics and Technology (PTB) to classification Ex II 3 GD according to ATEX-RL 94/9/EG. igus® E-Chains® made of igumid ESD correspond according to the German federal office of Physics and Technology (PTB) to classification Ex II 2 GD according ATEX-RL 94/9/EG.

Chainflex® cables with many certificates for e.g. DESINA

IPA Cleanroom

A lot of E-Chains® are suitable for the use in cleanrooms according to DIN EN ISO 14644-1. Confirmed by the IPA Fraunhofer Institute.

UL, CSA, CEI, CE and VDE

All igumid-materials for E-Chains® and E-Tubes have got the UL-material approval. The material igumid NB has got the fire protection class approval Ilb according to the test VDE 0304 Part 3/5.70, the approval V2 according UL 94 and the construction material class B2 according DIN 4102.

Noise level tests in igus® own acoustic laboratory

Interbus, CC-Link and DESINA

Chainflex®- cables are produced according to a lot of international standards: Interbus certification: For Interbus certification of certain CF11 bus cables. CC-Link: with CC-Link approval. DESINA: Many Chainflex® cables are Desina-compliant.

Clearly quieter

igus® E-ChainSystems® are clearly quieter. In the acoustic laboratory of the TÜV and the igus® GmbH different E-Chains® were compared. The igus® Systems E3, E6 and E4/00 (Series E4/101) are measurably (and clearly) quieter than other products of comparable size (see also noise-optimized E-Chains® ▶ page 1.11)

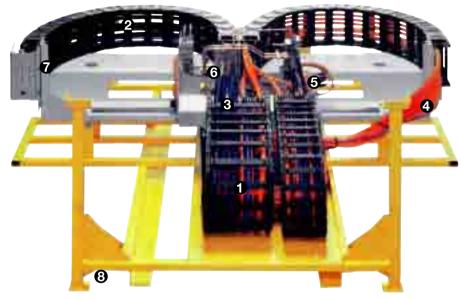
iaumid

The material igumid is free from toxins, according 2002/95/EC (RoHS).

iF Design Award

16 iF Design-Awards since 1984

ReadyChain® Plug and play E-ChainSystems®


1.42

ReadyChains® | Increase your cash-flow with igus®

The advantages of plug and play E-ChainSystems® from igus®

● Increase your cash-flow ● Cover the fluctuations ● Reduce your throughput ● Minimize downtime ● Reduce number od purchase orders by about 75% ● Zero stock ● Modern equipment means low cost at highest quality ● Any system is checked in our test center ● More than 3,000 electrical components from stock ● Delivery with individual Plates and mounting parts ● igus® is certified according to DIN EN ISO 9001:2000 ● ReadyChain®-factory with more than 80 experts ● Over 700 systems leave the 10 ReadyChain® factories worldwide every week ● Profit from our long experience acquired since 1993 ● Worldwide service in more than 45 countries

- Ordered cables and hoses within the E-Chain® using separators and shelves from igus®
- 2 E-Chain®, specially designed for your machine
- 3 Strain relief systems, specially designed for use in your machine
- Special cables and hoses, designed for E-Chains® and suited to your application

- 6 Connector components, preassembled according to specification standards of Siemens, Fanuc, SEW, etc.
- 6 Hydraulic components, designed for your application
- Plates and mounting parts, optimized for the quick installation on your machine. Delivered ready to install.
- 8 Installation and transport racks

igus® ReadyChains® increase your cash-flow

Whether major projects or simple, assembled E-Chains® - we save you costs, time and hassle through igus® ReadyChains®. Over 700 systems leave the 10 ReadyChain® factories worldwide every week. Profit from our long experience acquired since 1993, and increase your cash flow quickly and smoothly even for one-off systems.

- Zero stock of cables, E-Chains® and connectors Forget storage of flexible cables, connectors and other parts with our fast delivery times. Detailed information ▶ page 1.44
- Reduce throughput time by about 50% igus® delivers ready-made systems worldwide
- within 2-8 days of the guaranteed date. **Detailed information** ▶ page 1.45
- Respond flexibly to order fluctuation With ReadyChains® you are always prepared for variations in demand. We help cover the fluctuations. Detailed information ▶ page 1.46
- Minimize downtime -Small things can cause big problems. Buying numerous single parts increases your inventory and the chances of problems. You will get a system solution with ReadyChains®. Any system is checked in our test center. igus® is certified according to ISO 9001. Detailed information ▶ page 1.47
- Reduce number of suppliers and purchase ordes by about 75% One order one invoice one delivery one partner. Don't care about looking for numerous parts from numerous suppliers. We have the knowledge to provide you quickly with the optimal parts. Detailed information ▶ page 1.48

More application-examples and detailed information online ▶ www.readychain.eu

Phone +49- (0) 22 03-96 49-800

22 03-96 49-222

0 +49-

You determine the degree of harnessing

Any degree is possible

We harness from simple E-ChainSystems® with pre-fitted Chainflex® cables to complex systems. These systems may include all cables and hoses (pneumatic, hydraulic), patch plugs, inner partitions, connecting elements and connecting parts as required.

From easy ______ to project

You determine the size

Any size is possible

Because of our upto-date production processes we can deliver fast and cost effective custom build or serial production products.

..... to serial production

You determine the travel length

Choose the travel length

ReadyChains® offers the whole spectrum of possible travels of the igus® E-Chains®. We harness anything from short to long travels. Safe transportation guarantees damage-free delivery of any lengths.

Standardised ReadyChain®: Ready to fit

ReadvChain® "Basic"

Simple, prefabricated E-ChainSystem® including assembled cables without connectors, labelled and according to your specifications.

ReadyChain® "Standard"

Simple, prefabricated E-ChainSystem® including assembled cables with all connectors, labelled according to your specifications.

ReadyChain® "Premium"

A prefabricated E-ChainSystem® with cables of all kinds, as well as plugs, connectors and components. Special shafts and plain bearings machined according to your specifications.

igus

ReadyChains® | Increase your cash-flow with igus®

Reduces your storage costs to zero for cables, E-Chains® and connectors

In Cologne, igus® manufactures its products on about 25,000 m³ interior space. 80,000 products delivered off the shelf. Reduce your capital commitment and increase your cash flow with igus®ReadyChain®. Our large-volume material procurement saves you time and money, independent of serial application or individual projects. The complete component ReadyChain® reduces your storage and dispatching of E-Chains®, cables and plug connectors to a minimum, and at the same time reduces the number of your suppliers and orders by 75%. Make use of the experience of over 90 igus® ReadyChain® specialists in your own interest.

More than 70,000 E-Chain® components...

...more than 3,000 electrical components...

...more than 850 Chainflex® special cables...

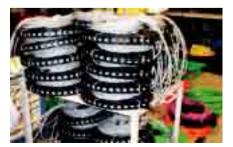
...in the huge igus® cable store.

ReadyChains® | Increase your cash-flow with igus®

2 Cut your throughput times from days to hours

The throughput time of the assembly of complete E-ChainSystems® often takes several days. Reduce the throughput times to hours -with ReadyChain® from igus®.

ReadyChains® - Ready to fix and install


The delivery condition of your ReadyChain® is crucial for your inhouse transport and installation. To bring the material into motion is one our most important tasks for your operation. Experienced specialists from the igus® ReadyChain® project planning division would be glad to advise you in the definition of the component interfaces and on the design of the combined transport and installation aids.

Machining center - System E4/light, Chainflex® cables, mounting plates and igus® strain relief systems delivered ready to install

Racks for transport to and within your company

Large batch sizes for serial production

Installation-optimized delivery of an igus® ReadyChain®

ReadyChain® "from the roll". We supply your ReadyChain® for long travels on special cable reels

Defined picking order for your time-phased production

igus® ReadyChain® on mounting frames for lightning fast final assembly

Phone +49- (0) 22 03-96 49-800 Fax +49- (0) 22 03-96 49-222

igus

ReadyChains® | Increase your cash-flow with igus®

Respond flexibly to order fluctuations

Utilize igus® manufacturing capacities

Transfer your capacity problems to us. The igus® ReadyChain® factory compensates for your order fluctuations withstate-of-theart production technology and specialized staff.

Respond flexibly and utilize our know-how

Flexible production planning Customers are guarantee consistent quality at low costs. All employees are trained both for the ReadyChain® installation and for the cable assembly. Flexible production planning safequards your delivery times

igus® ReadyChain®-factory: 80 experts produce more than 700 systems per week

Special departments take care of your individual project

Automatic crimp machines guarantee safe connections, rationally connected

The automatic cable stripping facility allows cheap prices for highest quality

ReadyChain® large projects - Specially trained employees accompany your project from start to finish

Cable handling and measurement

Precision at every igus® workplace.
For batch applications and one-off projects

ReadyChains® | Increase your cash-flow with igus®

Minimize your machine downtimes

All components of the ReadyChain® undergo an extensive quality control and functional tests

Our quality assurance division subjects every ReadyChain® system to functional tests with special testing facilities before they are dispatched. All ReadyChain® systems and components are tested in the igus® laboratory. Over 2,000 tests are conducted with E-ChainSystems® and cables every year. With an igus® system guarantee (according to application), we offer assurance on the safety and quality of your ReadyChain®, igus® is certified according to DIN FN ISO 9001:2000

Component test - tensile strength and shear force test of igus® E-Chain®. v= 10 m/s, a= 200 m/s²

Computer-aided, high-voltage test equipment ensure tested quality

Test adapter for the testing of any ReadyCable®

igus[®] climate chamber - E-Chain[®] and Chainflex[®] test runs possible at -40° (-40°F) to +60°C (140°F)

Component test - torsion tests for cables

All tests are logged and electronically stored

Quality from the beginning with hight-tech machines

Phone +49- (0) 22 03-96 49-800 Fax +49- (0) 22 03-96 49-222

ReadyChains® | Increase your cash-flow with igus®

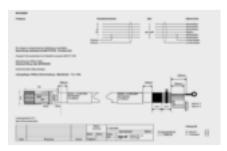
Feduce the number of supplier and orders by 75%

One order - One invoice - One delivery - One partner

Reduce your planning costs. We relieve you of as much work as possible. Our trained staff will step by step support a smooth development of your ReadyChain® project. We can demonstrate all advantages of ReadyChain® for your business. We will visit your site discuss the application and and collect all required data for your ReadyChain® project

igus® staff at the "on-site inspection" of a plant

Planning with special software tools



Drawing up detailed design worksheets

We can submit a complex offer within a week

Precise job and grouping of cables planning for each cable

ReadyChains[®]

ReadyChains® | Applications

Pre-harnessed E-Tube for machining centers.
E-Tube protect cables against dirt and chips

Horizontal machining center - harnessed with igus® E-ChainSystem® E4/4, Chainflex® cables and accessories

Flexible response to order fluctuations: Have the complete subassembly built at igus®

ReadyChains®, connected through a junction box, delivered by igus®, make installation even easier

On-site assembly of an igus[®] ReadyChain[®]. igus[®] delivery scope includes machine parts, saving time and money

Machining center - System E4/light E-Chains®, Chainflex®-cables, metal parts and igus® strain relief

Tool magazine - igus® E2/000 E-Chain® harnessed with Chainflex® CF27, CF11 and CF.INI cables

Harnessed igus® E4 E-Chains® on an X/Y unit in the textile industry with high cycle counts

