HE1B/2B/3B/5B
 Enabling Switches

HE1G
 Grip Switch

IDEC CORPORATION

What is an enabling switch?

Because operators use teach pendants in hazardous environments performing teaching, system changeover, and maintenance of robots, they must have protection against unpredictable motion of robots, and therefore teach pendants are equipped with 3 -position enabling switches.

An enabling switch is a 3 -position (OFF-ON-OFF) switch to allow a machine operation only when the switch is lightly pressed and held in the mid position (position 2). Because it disables machine operation when released (position 1) or further depressed (position 3) by a panicked operator, the safety of operators using teach pendants or grip switches in hazardous environments is ensured.

Operation of enabling switches

The requirement for operation of 3-position enabling switches (according to IEC 60204-1; 9.2.5.8):
When an enabling device is provided as a part of a system, it shall be designed to allow motion when actuated in one position only. In any other position motion shall be stopped.

- for a three-position type:
- position 1: off-function of the switch (actuator is not operated)
- position 2: enabling function (actuator is operated in its mid position)
- position 3: off-function (actuator is operated past its mid position) When returning from position 3 to position 2 , the function shall be ended.

Disparity detection of two contacts

- A high level of safety-safety category 3 or higher (ISO 13849-1)—is required when an operator works near a hazard inside a safety guard.
When released to position 1, the contacts are opened (turned off) by the force of a released spring. The 3-position enabling switches must be prepared for failures such as contact welding and short-circuits, and a dual circuit is provided. Even if one contact fails, the remaining contact can disable machine operation. Furthermore, a disparity detection circuit is provided so that machine operation is disabled when a disparity between the two circuits is detected using a safety relay module.

International standards on enabling switches

- IEC 60204-1: 1997
9.2.4 Where it is necessary to suspend safeguarding, (e.g. for setting or maintenance purposes), a mode selection device or means capable of being secured (e.g. locked) in the desired mode shall be provided so as to prevent automatic operation. In addition, one or more of the following means shall be provided:
- a portable control station (e.g. pendant) with an emergency stop device and, where appropriate, an enabling device. Where a portable station is in use, motion may be initiated only from that station.
- ISO 12100-2: 2003 Control mode for setting, teaching, process changeover, fault-finding, cleaning or maintenance
4.11.9 Where, for setting, teaching, process changeover, fault-finding, cleaning or maintenance of machinery, a guard has to be displaced or removed and/or a protective device has to be disabled, and where it is necessary for the purpose of these operations for the machinery or part of the machinery to be put in operation, safety of the operator shall be achieved using a specific control mode which simultaneously:
- permits operation of the hazardous elements only by continuous actuation of an enabling device, a hold-to-run control device or a two-hand control device.

- ANSI/RIA R15.06

The pendant or teaching control device shall have an enabling device using a three position switch which, when continuously held in a detented position, permits motion. Release of or compression past the midpoint detent of the device shall stop robot motion using circuitry consistent with 4.5.
Note: Tests have shown that human reaction to an emergency may be to release an object, or hold on tighter, thus compressing an enabling device. Design and installation of the enabling device should consider the ergonomics issues of sustained activation.

- ANSI B11.19, 12.3.1.3

Enabling devices shall be designed and constructed to permit limited and supervised machine motion while personnel are inside a hazard area.

A method of changing an operation mode (auto/ manual) using the HS5B safety switch and grip style enabling switch (HE1G)

Enabling switch is attached to the safety switchmachine operates automatically.

Enabling switch is detached from the safety switch-machine can be operated only manually.

Types

Type and Appearance	Enabling Switch				
	Side Mounting Type (1-contact) Top Mounting Type (1-contact)	Rectangular Type (6 contacts maximum) (without rubber boot)	Rectangular Type (6 contacts maximum) (with rubber boot)	16 mm Round Hole Type (without rubber boot)	16 mm Round Hole Type (with rubber boot)
	HE1B	HE2B		HE3B	
	Small and ideal for installing in enabling devices.	Ideal for 4-finger operation. A maximum of 6 contacts can be installed (2 contacts each for 3-position switch, button return monitor and button depress monitor)		Rectangular shape Can be mounted easily in a $\varnothing 16 \mathrm{~mm}$ round hole.	
		C ϵ	$c \epsilon$		
Degree of Protection	IP40		IP65	IP40	IP65
Applicable Standards	IEC / EN 60947-5-1 (DEMKO approval) UL508 (UL recognized) CSA C22. No. 14 (c-UL recognized) JIS C8201-5-1				
Standards					
Page	6, 7	8 to 10		11, 12	

Type and Appearance	Enabling Switch 2-contact, ø16mm Round Hole, With Rubber Boot		Grip Switch		
			With Monitor Switch	With Emergency Stop Switch	With Momentary Pushbutton Switch
	HE5B	HE9Z-GSH51 (Note)	HE1G		
	Can be mounted easily on $\varnothing 16 \mathrm{~mm}$ round hole. $C \epsilon$	Compact grip switch housing $C \epsilon$	2-contact 3-position switch and monitoring contact. $C \in$	Combination of emergency stop switch and 3position enabling switch. C	Combination of 3-position enabling switch and momentary pushbutton switch (1NO/2NO).
Degree of Protection	IP65		IP66	IP65	
Applicable Standards	IEC / EN 60947-5-1 (DEMKO approval) UL508 (UL recognized) CSA C22. No. 14 (c-UL recognized) JIS C8201-5-1	IEC / EN60529 UL50	IEC / EN 60947-5-1 (BG approval) UL508 (UL listed) CSA C22. No. 14 (c-UL listed) JIS C8201-5-1		
Standards		c us		c UL US	
Page	13, 14	15		16 to 18	

[^0]
Selection Chart of Enabling Switch and Grip Switch

HE1B Enabling Switch

3-position enabling switch to avoid hazards. Ideal for installing in teach pendants and other enabling devices.

- Ergonomically-designed OFF-ON-OFF.
- Direct opening action mechanism for shifting from position 2 (ON) to position 3 (OFF) (EN 60947-5-1/IEC 60947-5-1, Annex K).
- The switch does not turn ON while being released from position 3 (OFF when pressed) to position 1 (OFF when released) (IEC60204-1, 9.2.5.8).
- Reliable performance in compact and lightweight package.

Types

Mounting Style	Contact Configuration	Type No.	Ordering Type No.	Package Quantity
Side Mounting	1 contact (3-position)	HE1B-M1	HE1B-M1PN10	10
		HE1B-M1N	HE1B-M1NPN10	

- Minimum applicable load (reference value): 3V AC/DC, 5 mA

Ratings

- Contact Ratings

Rated Insulation Voltage (Ui)			250 V		
Rated Thermal Current (Ith)			5A		
Rated Voltage (Ue)			30V	125 V	250 V
Rated Current (le)	AC $50 / 60 \mathrm{~Hz}$	Resistive Load (AC-12)	-	3A	1.5A
		Inductive Load (AC-15)	-	1.5A	0.75A
	DC	Resistive Load (DC-12)	2A	0.4 A	0.2A
		Inductive Load (DC-13)	1 A	0.22A	0.1A
Contact Configuration (3-position switch)			1 contact		

- Minimum applicable load (reference value): 3V AC/DC, 5 mA

Specifications

Applicable Standards	IEC 60947-5-1, EN 60947-5-1 (DEMKO approval) UL508 (UL recognized), CSA C22.2, No. 14 (c-UL recognized), JIS C8201-5-1
Applicable Standards for Use	ISO 12100 / EN 292, IEC 60204-1 / EN 60204-1 ISO 11161 / prEN 11161, ISO 10218 / EN 775, ANSI/RIA R15.06, ANSI B11.19
Operating Temperature	-25 to $+60^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	45 to 85\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	2
Contact Resistance	$50 \mathrm{~m} \Omega$ maximum (initial value)
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum
Impulse Withstand Voltage	2.5 kV
Operating Frequency	1,200 operations per hour
Mechanical Durability	Position $1 \rightarrow 2 \rightarrow 1: \quad 1,000,000$ operations Position $1 \rightarrow 2 \rightarrow 3 \rightarrow 1: 100,000$ operations
Electrical Durability	100,000 operations minimum
Shock Resistance	
Vibration Resistance	Operating extremes: 5 to 55 Hz , amplitude 0.5 mm Damage limits: $\quad 16.7 \mathrm{~Hz}$, amplitude 1.5 mm
Terminal Style	Solder terminal
Applicable Wire	1 cable, $0.5 \mathrm{~mm}^{2}$ maximum
Solder Terminal Heat Resistance	310 to $350^{\circ} \mathrm{C}$, 3 seconds maximum
Terminal Tensile Strength	20N minimum
Mounting Screw Recommended Tightening Torque	HE1B-M1: M3 screw / 0.5 to 0.8 N.m HE1B-M1N: M2.6 screw / 0.4 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
Degree of Protection	IP40, except terminals
Conditional Short-circuit Current	$50 \mathrm{~A}(250 \mathrm{~V})$ (Use 250V/10A fast acting type fuse for short-circuit protection.)
Direct Opening Force	30 N minimum (position $2 \rightarrow 3$)
Operator Strength	250N minimum
Weight (approx.)	6 g

Operation Characteristics

Dimensions

When pressed to position 3: 2

Mounting Hole Layout

- HE1B-M1 (side mounting type) Mounting screw: M3

- HE1B-M1N (top mounting type)

Mounting screw: M2.6

Note: When installed on a mounting panel thicker than 2 mm , the actuator surface is below the panel when the button is pressed to position 3.

HE2B Enabling Switch

Multi-contact 3-position enabling switches Ideal for installing in large teach pendants

- Ergonomically-designed OFF-ON-OFF operation.
- Easy recognition of position 1 to 2 transition is made possible by a snap action switch.
- Sufficient difference in operating force is provided for shifting from position 2 to 3.
- Low pressure is required to maintain position 2, allowing for longtime operation.
- Reliable operation is assured even when the edge of the operator button is pressed.
- The switch does not turn ON while being released from position 3 (OFF) to position 1 (OFF) (IEC60204-1, 9.2.5.8).
- Some teach pendants are equipped with two 3-position enabling switches, and when one switch is pressed to position 3 (OFF), the other switch must not enable machine operation even when pressed to position 2. Enabling of machine operation must resume after both switches are released. For this purpose, also available are 3-position enabling switches with monitoring switches for button returned to position 1 and button pressed to position 3 (monitor switches have direct opening action mechanism).
- Two contacts are provided in a 3-position enabling switch so that even if one contact fails due to welding or short-circuit, the other contact can disable machine operation.

${ }^{\circ} \mathrm{NH}_{\mathrm{us}}(\mathrm{D})(\epsilon \Theta$
Direct Opening Action
- The waterproof rubber boot provides IP65 protection.

Types

Type		Contact Configuration			Type No.	Ordering Type No.	Package Quantity	
		3-position Switch	Button Return Monitor Switch	Button Depress Monitor Switch				
Without Rubber Boot		2	0	0	HE2B-M200	HE2B-M200	1	
		HE2B-M200PN10				10		
		2	1	1	HE2B-M211	HE2B-M211	1	
		HE2B-M211PN10				10		
		2	2	2	HE2B-M222	HE2B-M222	1	
		HE2B-M222PN10				10		
With Rubber Boot	Rubber Boot Material: Silicon Rubber Color: Y: yellow B: black		2	0	0	HE2B-M200P*	HE2B-M200P*	1
		HE2B-M200P*PN10					10	
		2	1	1	HE2B-M211P*	HE2B-M211P*	1	
						HE2B-M211P*PN10	10	
		2	2	2	HE2B-M222P*	HE2B-M222P*	1	
						HE2B-M222P*PN10	10	
	Rubber Boot Material: NBR/PVC Polyblend Color: gray	2	0	0	HE2B-M200PN1	HE2B-M200PN1	1	
						HE2B-M200PN1PN10	10	
		2	1	1	HE2B-M211PN1	HE2B-M211PN1	1	
						HE2B-M211PN1PN10	10	
		2	2	2	HE2B-M222PN1	HE2B-M222PN1	1	
						HE2B-M222PN1PN10	10	

Note: Specify rubber boot color code in place of $*$ in the Type No.

- Type No. Development
-3-position Switch
2: 2 contacts
- Button Return Monitor Switch $\quad \square$

0: No switch
1: 1 contact
2: 2 contacts

- Button Depress Monitor Switch

0: No switch
1: 1 contact
2: 2 contacts

HE2B-M 200 P *

- Rubber Boot Material, Color Blank: No rubber boot
Y: Silicon rubber, yellow
B: Silicon rubber, black
N1: NBR/PVC polyblend, gray
- Rubber Boot

Blank: No rubber boot
P: With rubber boot

Ratings

- Contact Ratings

Rated Insulation Voltage (Ui)				250V	
Rated Thermal Current (lth)			3A		
Rated Voltage (Ue)			30V	125 V	250 V
	AC	Resistive Load (AC-12)	-	1A	0.5A
3-position Switch		Inductive Load (AC-15)	-	0.7A	0.5A
	DC	Resistive Load (DC-12)	1A	0.2A	-
	DC	Inductive Load (DC-13)	0.7A	0.1 A	-
Rated Current (le)	AC	Resistive Load (AC-12)	-	2A	1A
Button Return Monitor Switch		Inductive Load (AC-15)	-	1A	0.5A
Button Depress Monitor Switch	DC	Resistive Load (DC-12)	2A	0.4A	0.2A
		Inductive Load (DC-13)	1A	0.22A	0.1A
Contact Configuration	3-position Switch		2 contacts		
	Button Return Monitor Switch		0 to 2 contacts		
	Button Depress Monitor Switch		0 to 2 contacts		

- Minimum applicable load (reference value): 3 V AC/DC, 5 mA

Specifications

Applicable Standards	IEC 60947-5-1, EN60947-5-1 (DEMKO approval), UL508 (UL recognized) CSA C22.2, No. 14 (c-UL recognized), JIS C8201-5-1
Applicable Standards for Use	ISO 12100 / EN 292, IEC 60204-1 / EN 60204-1 ISO11161 / prEN 11161, ISO10218 / EN 775, ANSI / RIA R15.06, ANSI B11.19
Operating Temperature	-25 to $+60^{\circ} \mathrm{C}$ (no freezing) (without rubber boot, with silicon rubber boot) -10 to $+60^{\circ} \mathrm{C}$ (no freezing) (with NBR/PVC polyblend rubber boot)
Relative Humidity	45 to 85\% RH (no condensation)
Storage Temperature	-40 to +80 ${ }^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	2 (inside panel, terminal side) 3 (outside panel, operator side)
Contact Resistance	50 m Ω maximum (initial value)

Operation Characteristics

Notes:

- When a rubber boot is used, the operating force depends on the operating temperature.
- The operating force to shift the switch from position 2 to position 3 can be changed. For details, contact IDEC.

Terminal Arrangement (Bottom View)

Dimensions

- Without Rubber Boot

- M3 nuts are supplied with the HE2B enabling switch.

Mounting Hole Layout

- Mounting screw: Two M3 screws
- Length of mounting screw: The thickness of mounting panel + 4 to 5 mm
- With Rubber Boot

All dimensions in mm.

Accessories

- Replacement Rubber Boot

Material	Color	Type No.	Ordering Type No.	Package Quantity
Silicon Rubber	Y: yellow B: black	HE9Z-D2*	HE9Z-D2*PN10	10
NBR/PVC Polyblend	Gray	HE9Z-D2N1	HE9Z-D2N1PN10	

[^1]
Rectangular operator part with $\varnothing 16 \mathrm{~mm}$ mounting for easy installation. 2-contact 3-position enabling switches ideal for installing in small teach pendants.

- Ergonomically-designed OFF-ON-OFF operation.
- Easy recognition of position 1 to 2 transition is made possible by a snap action switch.
- Sufficient difference in operating force is provided for shifting from position 2 to position 3.
- Low pressure is required to maintain in position 2 allowing for Iongtime operation.
- Reliable operation is assured even when the edge of the operator button is pressed.
- The switch does not turn ON while being released from position 3 (OFF) to position 1 (OFF) (IEC60204-1, 9.2.5.8).
- Two contacts are provided in a 3 -position enabling switch so that even one contact fails due to welding or short-circuit, the other contact can disable machine operation.
- The waterproof rubber boot provides IP65 protection.

${ }^{9} \$_{10}$ (D) C

Types

	Type	Contact Configuration	Type No.	Ordering Type No.	Package Quantity
Without Rubber Boot		2 contacts (3-position switch)	HE3B-M2	HE3B-M2	1
		HE3B-M2PN10		10	
	Rubber Boot Material:		HE3B-M2P*	HE3B-M2P*	1
	Color: Y: yellow, B: black			HE3B-M2P*PN10	10
	Rubber Boot Material: NBR/PVC Polyblend Color: gray		HE3B-M2PN1	HE3B-M2PN1	1
				HE3B-M2PN1PN10	10

Contact Ratings

Rated Insulation Voltage (Ui)			125 V	
Rated Thermal Current (Ith)			3A	
Rated Voltage (Ue)			30V	125 V
Rated Current (le)	AC	Resistive Load (AC-12)	-	1A
		Inductive Load (AC-15)	-	0.7A
	DC	Resistive Load (DC-12)	1A	0.2A
		Inductive Load (DC-13)	0.7 A	0.1A
Contact Configuration (3-position switch)			2 contacts	

Minimum applicable load (reference value): 3V AC/DC, 5 mA

Note: Specify rubber boot color code in place of * in the Type No.

Specifications

Applicable Standards	IEC 60947-5-1, EN 60947-5-1 (DEMKO approval) UL508 (UL recognized), CSA C22.2, No. 14 (c-UL recognized), JIS C8201-5-1
Applicable Standards for Use	ISO 12100 / EN 292, IEC 60204-1 / EN 60204-1 ISO 11161 / prEN 11161, ISO 10218 / EN 775 ANSI/RIA R15.06, ANSI B11.19
Operating Temperature	-25 to $+60^{\circ} \mathrm{C}$ (no freezing) (without rubber boot, with silicon rubber boot) -10 to $+60^{\circ} \mathrm{C}$ (no freezing) (with NBR/PVC polyblend rubber boot)
Relative Humidity	45 to 85\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	2 (inside panel, terminal side) 3 (outside panel, operator side)
Contact Resistance	$50 \mathrm{~m} \Omega$ maximum (initial value)
Insulation Resistance	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum (500V DC megger) Between terminals of different poles: $100 \mathrm{M} \Omega$ minimum (500V DC megger)
Impulse Withstand Voltage	1.5 kV
Operating Frequency	1,200 operations per hour
Mechanical Durability	Position $1 \rightarrow 2 \rightarrow 1: \quad$ 1,000,000 operations minimum Position $1 \rightarrow 2 \rightarrow 3 \rightarrow 1: \quad 100,000$ operations minimum
Electrical Durability	100,000 operations minimum
Shock Resistance	Operating extremes: $150 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: $500 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Resistance	Operating extremes: 5 to 55 Hz , amplitude 0.5 mm Damage limits: 16.7 Hz , amplitude 1.5 mm
Terminal Style	Solder terminal
Applicable Wire	1 cable, $0.5 \mathrm{~mm}^{2}$ maximum
Solder Terminal Heat Resistance	310 to $350^{\circ} \mathrm{C}$, 3 seconds maximum
Terminal Tensile Strength	20N minimum
Locking Ring Recommended Tightening Torque	0.68 to $0.88 \mathrm{~N} \cdot \mathrm{~m}$
Degree of Protection	IP40 (without rubber boot) IP65 (with rubber boot)
Conditional Short-circuit Current	50A (250V) (Use 250V/10A fast acting type fuse for short-circuit protection.)
Operator Strength	500 N minimum (pressing the entire operator surface)
Weight (approx.)	14 g (without rubber boot) 18 g (with rubber boot)

Operation Characteristics

Notes:

- When rubber boot is used, operating force depends on the operating temperature.
- The operating force to shift the switch from position 2 to position 3 can be changed. For details, contact IDEC.

Terminal Arrangement (Bottom View)

- 3-position switch (Note)

2 contacts
Terminal No.: between NO1 and C 1 , between NO 2 and C 2
Note: Use NO and C terminals for the 3-position switch of OFF \rightarrow ON \rightarrow OFF operation (NC terminal is not used).

Mounting Hole Layout

- Recommended tightening torque for locking ring: 0.68 to $0.88 \mathrm{~N} \cdot \mathrm{~m}$ - Use the locking ring wrench MT001 for tightening.
Note: To maintain waterproof property of the switch, do not drill through the anti-rotation hole in the mounting panel. When not providing a hole, cut off the antirotation projection from the rubber boot. When cutting off the projection, ensure not to make a hole in the rubber boot

Dimensions

- Without Rubber Boot

Accessories

- Replacement Rubber Boot

Material	Color	Type No.	Ordering Type No.	Package Quantity
Silicon Rubber	Y: yellow B: black	HE9Z-D3*	HE9Z-D3*PN10	10
NBR/PVC Polyblend	Gray	HE9Z-D3N1	HE9Z-D3N1PN10	

- Specify rubber boot color code in place of $*$ in the Type No.
- With Rubber Boot

All dimensions in mm.

Round-shaped operator for $\varnothing 16 \mathrm{~mm}$ mounting hole.
 3-position enabling switch with two contacts, ideal for installing in small teaching pendants.

- Ergonomically-designed OFF-ON-OFF operation.
- Easy recognition of position 1 to 2 transition is made possible by a snap action switch.
- Sufficient difference in operating force is provided for shifting from position 2 to position 3.
- Low pressure is required to maintain position 2, allowing longtime operation.
- Grip switch housing available.
- The switch does not turn ON when being released from position 3 (OFF when pressed) to position 1 (OFF when released) (IEC60204-1, 9.2.5.8).
- Two contacts are provided in a 3-position enabling switch so that even if one contact fails due to welding or short-circuit, the other contact can disable machine operation.
- The waterproof rubber boot provides IP65 protection.

c ${ }^{\mathbf{T}} \mathrm{H}_{\mathrm{us}}(\mathrm{D})(\epsilon$

Types

Type		Contact Configuration	Type No.	Ordering Type No.	Package Quantity
	Silicon Rubber Y: yellow B: black	2 contacts (3-position switch)	HE5B-M2P*	HE5B-M2P*	1
				HE5B-M2P*PN10	10
				HE5B-M2PN1	1
	NBR/			HE5B-M2PN1PN10	10

- Specify rubber boot color code in place of $*$ in the Type No.

Contact Ratings

Rated Insulation Voltage (Ui)			125 V	
Rated Current (lth)			3A	
Rated Voltage (Ue)			30V	125 V
Rated Current (le)	AC	Resistive Load (AC-12)	-	0.5A
		Inductive Load (AC-15)	-	0.3A
	DC	Resistive Load (DC-12)	1A	-
		Inductive Load (DC-13)	0.7 A	-
Contact Configuration (3-position switch)			2 contacts	

Minimum applicable load (reference): $3 \mathrm{~V} \mathrm{AC/DC}$,
Applicable operation area depends on the operating conditions and load.

Specifications

Applicable Standards	IEC 60947-5-1, EN 60947-5-1 (DEMKO approval),UL508 (UL recognized), CSA C22.2, No. 14 (c-UL recognized), JIS C8201-5-1
Applicable Standards for Use	ISO 12100 / EN292, IEC 60204-1 / EN 60204-1, ISO 11161 / prEN 11161, ISO 10218 / EN 775, ANSI/RIA R15.06, ANSI B11.19
Operating Temperature	Silicon rubber boot: -25 to $60^{\circ} \mathrm{C}$ (no freezing) NBR/PVC Polyblend rubber boot: -10 to $60^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	45 to 85\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	2 (inside panel, terminal side) 3 (outside panel, operator side)
Contact Resistance	$50 \mathrm{~m} \Omega$ maximum (initial value)
Insulation Resistance	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum (500V DC megger) Between terminals of different pole: $100 \mathrm{M} \Omega$ minimum (500V DC megger)
Impulse Withstand Voltage	1.5 kV
Operating Frequency	1,200 operations per hour
Mechanical Durability	Position $1 \rightarrow 2 \rightarrow 1: \quad$ 1,000,000 operations minimum Position $1 \rightarrow 2 \rightarrow 3 \rightarrow 1: \quad 100,000$ operations minimum
Electrical Durability	100,000 operations minimum
Shock Resistance	Operating extremes: $150 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: $500 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Resistance	Operating extremes: 5 to 55 Hz , amplitude 0.5 mm Damage limits: $\quad 5$ to 55 Hz , amplitude 0.5 mm
Terminal Style	Solder terminal
Applicable Wire	$0.5 \mathrm{~mm}^{2}$ maximum per line
Solder Terminal Heat Resistance	310 to $350^{\circ} \mathrm{C}$, 3 seconds maximum
Terminal Tensile Strength	20 N minimum
Locking Ring Recommended Tightening Torque	0.29 to 0.49 N.m
Degree of Protection	IP65
Conditional Short-circuit Current	50 A (125V) (Use 250V/10A fast acting type fuse for short circuit protection.)
Operator Strength	250N minimum (when pressing the entire operator surface)
Weight (approx.)	9 g

Operating Characteristics

Notes:

- Operating force depends on ambient temperature.
- The operating force to shift the switch from position 2 to position 3 can be changed. For details, consult IDEC.

Terminal Arrangement (Bottom View)

-3-position switch (Note)
2 contacts
Terminal No.: between NO1 and C1, NO 2 and C 2
Note: For OFF \rightarrow ON \rightarrow OFF 3-position switches, use NO and C terminals (NC terminal is not used).

Mounting Hole Layout

- Recommended Tightening Torque for Locking Ring: 0.29 to $0.49 \mathrm{~N} \cdot \mathrm{~m}$
- Use the MT-001 locking ring wrench for tightening.

Dimensions

With Rubber Boot

All dimensions in mm.

Accessories

- Replacement Rubber Boot

Rubber Boot Material	Color	Type No.	Ordering Type No.	Package Quantity
Silicon Rubber	B: black Y: yellow	HE9Z-D5*	HE9Z-D5*PN10	10
NBR/PVC Polyblend	Gray	HE9Z-D5N1	HE9Z-D5N1PN10	

[^2]

- Locking Ring Wrench

Type No: MT-001

- Grip Switch Housing

HE5B enabling switches can be installed in the HE9Z-GSH51 grip switch housing to be used as 3-position grip switches.

Types

Type No.	Ordering Type No.	Package Quantity
HE9Z-GSH51	HE9Z-GSH51	1

Specifications

Applicable Standards	IEC / EN 60529 UL50
Operating Temperature	-25 to $60^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	45 to 85\% RH (no condensation)
Storage Temperature	-40 to $80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	3
Shock Resistance	Damage limits: $500 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Resistance	Damage limits: 5 to 55 Hz , amplitude 0.5 mm
Electric Shock Protection Class	Class II (when using HE5B-M2P*)
Applicable Cable	Outside diameter $\varnothing 4.5$ to 10 mm
Conduit Size	M16 (connector is supplied with the grip switch housing)
Degree of Protection	IP65 (with HE5B-M2P*) NEMA type 4X indoor use only (with HE5B-M2P*)
Weight (approx.)	65 g (grip switch housing only)

- The above specifications are for the grip switch housing only.

For enabling switch, see the HE5B specifications on page 13.

- The following switches can be installed on the grip switch housing to be used as hand-held switches.
- AB6M pushbuttons (IP65, except for AB6M-V)
- AS6M selector switches (IP65)
- AS6M key selector switches (IP65)

Notes:

- The HE9Z-GSH51 grip switch housing does not include the HE5B enabling switch. The enabling switch must be ordered separately.
- The HE5B enabling switch must be installed and wired to the HE9Z-GSH51 grip switch housing by the user. For information on wiring, see the instruction sheet supplied with the HE9Z-GSH51.

Dimensions

HE9Z-GSH51

HE9Z-GSH51 + HE5B Construction

- Anti-rotation ring is not required when installing the HE5B enabling switch on the HE9Z-GSH51 grip switch housing. Use the locking ring only.
- Mounting Bracket

Type No: HE9Z-GH1

HE1G Grip Switch

Ergonomically designed grip switch with two 3-position enabling switches.

- Ergonomically-designed OFF-ON-OFF operation.
- Direct opening action mechanism for shifting from position 2 (ON) to position 3 (OFF) (EN 60977-5-1/IEC 60947-5-1, Annex K).
- The switch does not turn ON when being released from position 3 (OFF when pressed) to position 1 (OFF when released) (IEC60204-1, 9.2.5.8).
- Two contacts are provided so that even if one contact fails due to welding or short-circuit, the other contact can disable machine operation.
- Emergency stop switch and momentary pushbutton versions are available.
- Conduit connector supplied.
- HE1G-21SM is IP66 waterproof.
- Can be used for applications required by the ANSI robot standard.

Types

Contact Configuration			Rubber Boot	Ordering Type No.	Package Quantity
3-position Switch	Monitor Switch	Pushbutton			
2 contacts	With (1NC)		Silicon Rubber / yellow	HE1G-21SM	1
		ut	NBR / PVC Polyblend / gray	HE1G-21SM-1N	
			Silicon Rubber / yellow	HE1G-21SMB	
		Momentary Pushbutton (1NO)	NBR / PVC Polyblend / gray	HE1G-21SMB-1N	
	Without	Emergency Stop Switch (2NC)	Silicon Rubber / yellow	HE1G-20ME	
			NBR / PVC Polyblend / gray	HE1G-20ME-1N	
		Momentary Pushbutton (2NO)	Silicon Rubber / yellow	HE1G-20MB	
			NBR / PVC Polyblend / gray	HE1G-20MB-1N	

Ratings

- Contact Ratings

Rated Insulation Voltage (Ui)				250 V (momentary pushbutton switch: 125 V)		
Rated Thermal Current (lth)				3A		
Rated Voltage (Ue)				30V	125 V	250V
Rated Current (le)	3-position Switch (terminal No. 1-2, 3-4)	AC	Resistive Load (AC-12)	-	3A	1.5A
			Inductive Load (AC-15)	-	1.5A	0.75A
		DC	Resistive Load (DC-12)	2 A	0.4A	0.2A
			Inductive Load (DC-13)	1A	0.22A	0.1 A
	Monitor Switch (HE1G-21SM, terminal No. 5-6)	AC	Resistive Load (AC-12)	-	2A	1A
			Inductive Load (AC-15)	-	1A	0.5A
		DC	Resistive Load (DC-12)	2A	0.4A	0.2A
			Inductive Load (DC-13)	1 A	0.22A	0.1A
	Emergency Stop Switch (HE1G-20ME, terminal No. 5-6, 7-8)	AC	Resistive Load (AC-12)	-	-	-
			Inductive Load (AC-15)	-	-	0.5A
		DC	Resistive Load (DC-12)	-	-	-
			Inductive Load (DC-13)	-	-	0.1 A
	Momentary Pushbutton Switch (HE1G-20MB, terminal No. 5-6, 7-8)	AC	Resistive Load (AC-12)	-	0.5A	-
			Inductive Load (AC-15)	-	0.3A	-
		DC	Resistive Load (DC-12)	1A	0.2A	-
			Inductive Load (DC-13)	0.7A	0.1A	-
Contact Configuration	3-position Switch			2 contacts		
	Monitor Switch			0 or 1 contact		
	Emergency Stop Switch			0 or 2 contacts		
	Momentary Pushbutton Switch			0 to 2 contacts		

- Minimum applicable load (reference value): 3V AC/DC, 5 mA
- Applicable operation area depends on the operating conditions and load.

Specifications

Applicable Standards	IEC 60947-5-1, EN 60947-5-1 (BG approval), UL508 (UL listed), CSA C22.2, No. 14 (c-UL listed), JIS C8201-5-1
Applicable Standards for Use	ISO 12100 / EN 292, IEC 60204-1 / EN 60204-1, ISO11161 / prEN11161, ISO 10218 / EN 775, ANSI/RIA R15.06, ANSI B11.19
Operating Temperature	Silicon rubber boot: -25 to $60^{\circ} \mathrm{C}$ (no freezing) NBR/PVC Polyblend rubber boot: -10 to $60^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	45 to 85\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	3
Contact Resistance	$100 \mathrm{~m} \Omega$ maximum (initial value)
Insulation Resistance	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum (500V DC megger) Between terminals of different pole: $100 \mathrm{M} \Omega$ minimum (500V DC megger)
Impulse Withstand Voltage	2.5 kV (except for momentary pushbuttons)
Electric Shock Protection Class	Class II (IEC 61140)
Operating Frequency	1,200 operations per hour
Mechanical Durability	Position $1 \rightarrow 2 \rightarrow 1: \quad$ 1,000,000 operations minimum Position $1 \rightarrow 2 \rightarrow 3 \rightarrow 1: \quad 100,000$ operations minimum
Electrical Durability	100,000 operations minimum
Shock Resistance	Operating extremes: $150 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: $1,000 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Resistance	Operating extremes: 5 to 55 Hz , amplitude 0.5 mm minimum Damage limits: $\quad 16.7 \mathrm{~Hz}$, amplitude 1.5 mm minimum
Applicable Wire	0.14 to $1.5 \mathrm{~mm}^{2}$
Applicable Cable	Outside diameter ø7 to 13 mm
Conduit Size	M20 (connector is supplied with the grip switch)
Terminal Tensile Strength	20 N minimum
Terminal Screw Tightening Torque	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
Degree of Protection	HE1G-21SM: IP66 (IEC 60529) HE1G-20ME: IP65 (IEC 60529) HE1G-20MB: IP65 (IEC 60529) HE1G-21SMB: IP65 (IEC 60529)
Conditional Short-circuit Current	50 A (250V) (Use 250V/10A fast acting type fuse for short circuit protection.)
Weight (approx.)	HE1G-21SM: 210g HE1G-20ME: 250g HE1G-20MB: 220g

Operating Characteristics

Emergency Stop Switch: 2NC contact (terminal No. 5-6, 7-8)

- HE1G-20MB
Position 1
Position $2 \quad$ Position 3

Momentary Pushbutton: 2NO contact (terminal No. 5-6, 7-8)
Momentary Pushbutton: 1NO contact (terminal No. 7-8)
\square : contact ON (closed) \square : contact OFF (open)
Notes:
- 3-position switches operate with direct opening action Θ when shifting from position 2 to position 3.
- For the output of the enabling device, use terminals 1-2 and 3-4.
- The above operation characteristics show when the center of the button is pressed.

Dimensions

- HE1G-21SM

Connector (supplied with grip switch)
Type No.: SKINTOP BS-M20 × 1.5 (LAPP)

- HE1G-21SM

Emergency Stop Switch

Connector (supplied with grip switch)
Type No.: SKINTOP BS-M20 $\times 1.5$ (LAPP)

- HE1G-20MB / HE1G-21SMB

Connector (supplied with grip switch) Type No.: SKINTOP BS-M20 × 1.5 (LAPP)

Accessories

- Mounting Bracket (for hanging grip switch)

- Rubber Boot Kit (replacement)

Rubber Boot Material	Type No.
Silicon Rubber / yellow	HE9Z-GBK1
NBR/PVC Polyblend / gray	HE9Z-GBK1-1N

Safety Precautions

- Turn off power before starting installation, removal, wiring, maintenance, and inspection of HE1G grip switches. Failure to turn power off may cause electric shock or fire hazard.
- Install the HE1G grip switches according to the instructions on page 19 to achieve strength against operating force. Insufficient strength and excessive force may damage grip switches, resulting in possible electric shock or fire hazard.
- Use wires of the proper size to meet the voltage and current requirements. Solder the terminal properly according to the instructions on page 19. Improper soldering may cause overheating, resulting in fire hazard.

Instructions

Installation Instructions

HE2B Enabling Switch with Rubber Boot

- The ridge on the bottom of rubber boot serves as a seal, and waterproof characteristics are attained when the ridge is tightly pressed to the mounting panel. When the mounting panel is bent and the ridge cannot be pressed to the panel, add a reinforcing rib to secure the boot to the mounting panel.
- The edge of rubber boot may stick out if excessive force is applied on the rubber boot. When such event is anticipated, it is recommended to embed the rubber boot in the mounting panel as shown in the figure below.

HE2B/HE3B/HE5B Enabling Switch with Rubber Boot

- When an enabling switch with rubber boot is mounted in a her-metically-sealed control box, a large change in internal air pressure may cause the rubber boot to inflate and deflate, affecting the performance of the enabling switch. Check periodically to make sure that the enabling switch operates correctly.

HE3B Enabling Switch with Rubber Boot

- If the mounting panel is deformed, waterproof characteristics of the enabling switch with rubber boot cannot be achieved. Keep sufficient strength on the mounting panel.
- The rubber boot has a projection for positioning the enabling switch onto the mounting panel. To maintain waterproof characteristics of the switch, do not drill through the anti-rotation hole in the mounting panel. When not providing the hole, remove the anti-rotation projection from the rubber boot. When removing the projection, ensure not to make a hole in the rubber boot.
- Secure the flange part when tightening the locking ring so that the enabling switch does not rotate. When the enabling switch may rotate during operation, it is recommended to embed the switch in the mounting panel as shown below.

HE5B Enabling Switch with Rubber Boot

- If the mounting panel is deformed when mounting an enabling switch with rubber boot, the normal waterproof characteristics cannot be assured. Keep sufficient strength on the mounting panel.
- Do not press the rubber boot with excessive pressure in an inappropriate direction, otherwise the waterproof function can be damaged.

Wiring Instructions

HE1B/HE2B/HE3B/HE5B Enabling Switch

- Applicable wire size: $0.5 \mathrm{~mm}^{2}$ maximum $\times 1 \mathrm{pc}$.
- Solder the terminal at a temperature of 310 to $350^{\circ} \mathrm{C}$ within $3 \mathrm{sec}-$ onds using a soldering iron. Sn-Ag-Cu type is recommended when using lead-free solder.
- When soldering, take care not to touch the enabling switch with the soldering iron. Also ensure that no tensile force is applied to the terminal. Do not bend the terminal or apply excessive force to the terminal.
- Use non-corrosive liquid rosin as soldering flux.

HE9Z-GSH51 Grip Switch Housing

- Recommended Tightening Torque

Parts for tightening		Torque
A	Head and body	$1.0 \pm 0.2 \mathrm{~N} \cdot \mathrm{~m}$
B	Body and connector	$3.0 \pm 0.3 \mathrm{~N} \cdot \mathrm{~m}$
C	Connectors	$3.0 \pm 0.3 \mathrm{~N} \cdot \mathrm{~m}$

Note: Recommended connector is used for the tightening torque of B and C .
When using another connector, refer to the tightening torque of the connector used.

HE1G Grip Switch

- Wire Length inside the Grip Switch

	Terminal No. 1-4	Terminal No. 5-8
Wire length L1, L2 (mm)	L1 $=40 \mathrm{~mm}$	$\mathrm{~L} 2=27 \mathrm{~mm}$
Wire stripping length L3 (mm)	$\mathrm{L} 3=6 \mathrm{~mm}$	

- Applicable Wire Size in Terminal
<Direct wiring>
0.14 to $1.5 \mathrm{~mm}^{2}$ (one wire per terminal)

Note: When using stranded wire, make sure that adjoining terminals are not short-circuited by frayed wires. Also, do not solder the wires to avoid frayed wires.
<Ferrules>
Recommended ferrules (Phoenix Contact)

Type No.	Applicable Wire
AI $0,5-8 \mathrm{WH}$	0.34 to $0.5 \mathrm{~mm}^{2}$
AI $0,75-8 \mathrm{GY}$	0.5 to $0.75 \mathrm{~mm}^{2}$
$\mathrm{Al} 1,0-8 \mathrm{RD}$	0.75 to $1.0 \mathrm{~mm}^{2}$
AI $1,5-8 \mathrm{BK}$	1.0 to $1.5 \mathrm{~mm}^{2}$

Crimping tool: CRIMPFOX UD6

- Recommended Screw Tightening Torque

Parts for Tightening		Tightening Torque
A	Rubber boot and the base $(M 4$ screw $\times 3)$	$1.2 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$
B	Connector and grip switch	$4.0 \pm 0.3 \mathrm{~N} \cdot \mathrm{~m}$
C	Connector and connector	$4.0 \pm 0.3 \mathrm{~N} \cdot \mathrm{~m}$
D	Terminal screw (M3 screw $\times 8)$	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
E	Do not remove screws	-

The torque of screws B and C in the table above are values when the recommended connector is used. When using another connector, refer to the specifications of the connector used.

Instructions

Operating Instructions

HE2B/HE3B/HE5B Enabling Switch, HE1G Grip Switch

- To achieve a high level of safety, connect the two contacts of the 3-position switch to a disparity detection circuit (e.g., safety relay module) (ISO 13849-1, EN 954-1)
- Because two contacts are designed to operate independently, pressing the edge of a button turns on one contact earlier than the other contact, causing a delay in operation. To avoid this, always press the center of the button.

HE1B/HE2B/HE3B/HE5B Enabling Switch

- 3-position enabling switches output ON signals in position 2. Systems must be designed to enable machine operation when the 3-position enabling switch is in position 2 only.
- For operation of shifting the enabling switch from position 2 (ON) to position 3 (OFF), make sure that no load larger than specified is applied to the operator.
- For a teach pendants' shape and structure, perform sufficient risk assessment to prevent unintended operation of 3-position enabling switches (e.g., when the teach pendant is designed with a 3-position enabling switch protruding from the teach pendant, the switch may be initiated unintentionally if the teach pendant is placed with the side of enabling switch down).
- Strong force may be applied to a 3-position enabling switch when pressed to position 3 . For teach pendants, provide sufficient strength to the part where 3-position enabling switches will be installed.
- Read the operating instructions in the catalog or user's manual to ensure correct operation before starting installation, wiring, operation, maintenance, and inspection of the $\mathrm{HE} 1 \mathrm{~B} / 2 \mathrm{~B} / 3 \mathrm{~B} / 5 \mathrm{~B}$ enabling switches and HE 1 G grip switches.

Specifications and other descriptions in this catalog are subject to change without notice.

[^0]: Note: HE9Z-GSH51 is housing only. Install the HE5B enabling switch to use as a grip switch. See page 15 for details.

[^1]: Note: Specify a rubber boot color code in place of * in the Type No.

[^2]: - Specify rubber boot color code in place of $*$ in the Type No.

